Project description:The Rhabdoviridae is among the most diverse families of RNA viruses and currently classified into 18 genera with some rhabdoviruses lethal to humans and other animals. Herein, we describe genetic characterization of three novel rhabdoviruses from bats in China. Of these, two viruses (Jinghong bat virus and Benxi bat virus) found in Rhinolophus bats showed a phylogenetic relationship with vesiculoviruses, and sequence analyses indicate that they represent two new species within the genus Vesiculovirus. The remaining Yangjiang bat virus found in Hipposideros larvatus bats were only distantly related to currently known rhabdoviruses.
Project description:Bats have been implicated as important reservoir hosts of alpha- and betacoronaviruses. In this study, diverse coronaviruses (CoVs) were detected in 50 of 951 (positive rate 5.3%) intestinal specimens of eight bat species collected in four provinces and the Tibet Autonomous Region of China by pan-coronavirus RT-PCR screening. Based on 400-nt RNA-dependent RNA polymerase (RdRP) sequence analysis, eight belonged to genus Alphacoronavirus and 42 to Betacoronavirus. Among the 50 positive specimens, thirteen gave rise to CoV full-length RdRP gene amplification for further sequence comparison, of which three divergent sequences (two from a unreported province) were subjected to full genome sequencing. Two complete genomes of betacoronaviruses (JTMC15 and JPDB144) and one nearly-complete genome of alphacoronavirus (JTAC2) were sequenced and their genomic organization predicted. The present study has identified additional numbers of genetically diverse bat-borne coronaviruses with a wide distribution in China. Two new species of bat CoV, identified through sequence comparison and phylogenetic analysis, are proposed.
Project description:A renewed interest in mammalian orthoreoviruses (MRVs) has emerged since new viruses related to bat MRV type 3, detected in Europe, were identified in humans and pigs with gastroenteritis. This study reports the isolation and characterization of a novel reassortant MRV from the lesser horseshoe bat (Rhinolophus hipposideros). The isolate, here designated BatMRV1-IT2011, was first identified by electron microscopy and confirmed using PCR and virus-neutralization tests. The full genome sequence was obtained by next-generation sequencing. Molecular and antigenic characterizations revealed that BatMRV1-IT2011 belonged to serotype 1, which had not previously been identified in bats. Phylogenetic and recombination detection program analyses suggested that BatMRV1-IT2011 was a reassortant strain containing an S1 genome segment similar to those of MRV T1/bovine/Maryland/Clone23/59 and C/bovine/ Indiana/MRV00304/2014, while other segments were more similar to MRVs of different hosts, origins and serotypes. The presence of neutralizing antibodies against MRVs has also been investigated in animals (dogs, pigs, bovines and horses). Preliminary results suggested that MRVs are widespread in animals and that infections containing multiple serotypes, including MRVs of serotype 1 with an S1 gene similar to BatMRV1-IT2011, are common. This paper extends the current knowledge of MRVs and stresses the importance to continue and improve MRV surveillance in bats and other mammals through the development and standardization of specific diagnostic tools.
Project description:Mammalian orthoreoviruses (MRVs) are increasingly reported to cause various diseases in humans and other animals, with many possibly originating from bats, highlighting the urgent need to investigate the diversity of bat-borne MRVs (BtMRVs). Here, we report the detection and characterization of a reassortant MRV that was isolated from a bat colony in Xinjiang, China. The BtMRV showed a wide host and organ tropism and can efficiently propagate the cell lines of different animals. It caused mild damage in the lungs of the experimentally inoculated suckling mice and was able to replicate in multiple organs for up to three weeks post-inoculation. Complete genome analyses showed that the virus was closely related to MRVs in a wide range of animals. An intricate reassortment network was revealed between the BtMRV and MRVs of human, deer, cattle, civet and other bat species. Specifically, we found a bat-specific clade of segment M1 that provides a gene source for the reassortment of human MRVs. These data provide important insights to understand the diversity of MRVs and their natural circulation between bats, humans, and other animals. Further investigation and surveillance of MRV in bats and other animals are needed to control and prevent potential MRV-related diseases.
Project description:We identified a novel calicivirus in a pup with enteritis. The isolate was related genetically (90.1% aa identity in the capsid protein) to a lion norovirus strain.
Project description:Bartonella species are emerging human pathogens. Bats are known to carry diverse Bartonella species, some of which are capable of infecting humans. However, as the second largest mammalian group by a number of species, the role of bats as the reservoirs of Bartonella species is not fully explored, in term of their species diversity and worldwide distribution. China, especially Northern China, harbors a number of endemic insectivorous bat species; however, to our knowledge, there are not yet studies about Bartonella in bats in China. The aim of the study was to investigate the prevalence and genetic diversity of Bartonella species in bats in Northern China. Bartonella species were detected by PCR amplification of gltA gene in 25.2% (27/107) bats in Mengyin County, Shandong Province of China, including 1/3 Rhinolophus ferrumequinum, 2/10 Rhinolophus pusillus, 9/16 Myotis fimbriatus, 1/5 Myotis ricketti, 14/58 Myotis pequinius. Phylogenetic analysis showed that Bartonella species detected in bats in this study clustered into ten groups, and some might be novel Bartonella species. An association between Bartonella species and bat species was demonstrated and co-infection with different Bartonella species in a single bat was also observed. Our findings expanded our knowledge on the genetic diversity of Bartonella in bats, and shed light on the ecology of bat-borne Bartonella species.
Project description:To clarify the evolutionary relationships among betavoronaviruses that infect bats, we analyzed samples collected during 2010-2011 from 14 insectivorous bat species in China. We identified complete genomes of 2 novel betacoronaviruses in Rhinolophus pusillus and Chaerephon plicata bats, which showed close genetic relationships with severe acute respiratory syndrome coronaviruses.