Project description:Alternating hemiplegia of childhood (AHC) is a rare neurodevelopmental disorder characterized by recurrent paroxysmal hemiplegic attacks that affect one or the other side of the body. Up to 74% of patients with AHC have a pathologic variant in the ATP1A3 gene. After the introduction of next-generation sequencing, intermediate cases and atypical cases have expanded the clinical spectrum of ATP1A3-related disorders. Herein, we report the first case of AHC in Korea. A 33-year-old man visited our hospital with recurrent hemiplegic and dystonic episode after his first birthday. He was completely normal between episodes and did not have any ataxia, but brain magnetic resonance imaging showed cerebellar atrophy. He also had pes planovalgus deformity. Whole exome sequencing revealed a heterozygous G947R variant in the ATP1A3 gene (c.2839G > C, rs398122887), which is a known pathologic variant. This atypical case of AHC demonstrates the importance of the clinical approach in diagnosing ATP1A3-related disorders.
Project description:Alternating hemiplegia of childhood (AHC) is a rare and severe neurodevelopmental disorder characterized by recurrent hemiplegic episodes. Most AHC cases are sporadic and caused by de novo ATP1A3 pathogenic variants. In this study, the aim was to identify the origin of ATP1A3 pathogenic variants in a Chinese cohort. In 105 probands including 101 sporadic and 4 familial cases, 98 patients with ATP1A3 pathogenic variants were identified, and 96.8% were confirmed as de novo. Micro-droplet digital polymerase chain reaction was applied for detecting ATP1A3 mosaicism in 80 available families. In blood samples, four asymptomatic parents, including two paternal and two maternal, and one proband with a milder phenotype were identified as mosaicism. Six (7.5%) parental mosaicisms were identified in multiple tissues, including four previously identified in blood and two additional cases identified from paternal sperms. Mosaicism was identified in multiple tissues with varied mutant allele fractions (MAFs, 0.03%-33.03%). The results suggested that MAF of mosaicism may be related to phenotype severity. This is the first systematic report of ATP1A3 mosaicism in AHC and showed mosaicism as an unrecognized source of previously considered "de novo" AHC. Identifying ATP1A3 mosaicism provides more evidence for estimating recurrence risk and has implications in genetic counseling of AHC.
Project description:Alternating hemiplegia of childhood (AHC) is a rare, severe neurodevelopmental syndrome characterized by recurrent hemiplegic episodes and distinct neurological manifestations. AHC is usually a sporadic disorder and has unknown etiology. We used exome sequencing of seven patients with AHC and their unaffected parents to identify de novo nonsynonymous mutations in ATP1A3 in all seven individuals. In a subsequent sequence analysis of ATP1A3 in 98 other patients with AHC, we found that ATP1A3 mutations were likely to be responsible for at least 74% of the cases; we also identified one inherited mutation in a case of familial AHC. Notably, most AHC cases are caused by one of seven recurrent ATP1A3 mutations, one of which was observed in 36 patients. Unlike ATP1A3 mutations that cause rapid-onset dystonia-parkinsonism, AHC-causing mutations in this gene caused consistent reductions in ATPase activity without affecting the level of protein expression. This work identifies de novo ATP1A3 mutations as the primary cause of AHC and offers insight into disease pathophysiology by expanding the spectrum of phenotypes associated with mutations in ATP1A3.
Project description:Alternating Hemiplegia of Childhood (AHC) is a rare disorder with onset in the first 18 months of life characterized by stereotyped paroxysmal manifestations of tonic and dystonic attacks, nystagmus with other oculomotor abnormalities, respiratory and autonomic dysfunctions. AHC is often associated with epileptic seizures and developmental delay. Hemiplegic paroxysm is the most remarkable symptom, although AHC includes a large series of clinical manifestations that interfere with the disease course. No cure is available and the treatment involves many specialists and therapies. Flunarizine is the most commonly used drug for reducing the frequency and intensity of paroxysmal events. Mutations in ATP1A2, particularly in ATP1A3, are the main genes responsible for AHC. Some disorders caused by ATP1A3 variants have been defined as ATP1A3-related disorders, including rapid-onset dystonia-parkinsonism, cerebellar ataxia, pes cavus, optic atrophy, sensorineural hearing loss, early infant epileptic encephalopathy, child rapid-onset ataxia, and relapsing encephalopathy with cerebellar ataxia. Recently, the term ATP1A3 syndrome has been identified as a fever-induced paroxysmal weakness and encephalopathy, slowly progressive cerebellar ataxia, childhood-onset schizophrenia/autistic spectrum disorder, paroxysmal dyskinesia, cerebral palsy/spastic paraparesis, dystonia, dysmorphism, encephalopathy, MRI abnormalities without hemiplegia, and congenital hydrocephalus. Herewith, we discussed about historical annotations of AHC, symptoms, signs and associated morbidities, diagnosis and differential diagnosis, treatment, prognosis, and genetics. We also reported on the ATP1A3-related disorders and ATP1A3 syndrome, as 2 recently established and expanded genetic clinical entities.
Project description:Alternating hemiplegia of childhood is a rare neurodevelopmental disorder caused by ATP1A3 mutations. Some evidence for disease progression exists, but there are few systematic analyses. Here, we evaluate alternating hemiplegia of childhood progression in humans and in the D801N knock-in alternating hemiplegia of childhood mouse, Mashlool, model. This study performed an ambidirectional (prospective and retrospective data) analysis of an alternating hemiplegia of childhood patient cohort (n = 42, age 10.24 ± 1.48 years) seen at one US centre. To investigate potential disease progression, we used linear mixed effects models incorporating early and subsequent visits, and Wilcoxon Signed Rank test comparing first and last visits. Potential early-life clinical predictors were determined via multivariable regression. We also compared EEG background at first encounter and at last follow-up. We then performed a retrospective confirmation study on a multicentre cohort of alternating hemiplegia of childhood patients from France (n = 52). To investigate disease progression in the Mashlool mouse, we performed behavioural testing on a cohort of Mashlool- mice at prepubescent and adult ages (n = 11). Results: US patients, over time, demonstrated mild worsening of non-paroxysmal disability index scores, but not of paroxysmal disability index scores. Increasing age was a predictor of worse scores: P < 0.0001 for the non-paroxysmal disability index, intellectual disability scale and gross motor scores. Earliest non-paroxysmal disability index score was a predictor of last visit non-paroxysmal disability index score (P = 0.022), and earliest intellectual disability score was a predictor of last intellectual disability score (P = 0.035). More patients with EEG background slowing were noted at last follow-up as compared to initial (P = 0.015). Similar worsening of disease with age was also noted in the French cohort: age was a significant predictor of non-paroxysmal disability index score (P = 0.001) and first and last non-paroxysmal disability index score scores significantly differed (P = 0.002). In animal studies, adult Mashlool mice had, as compared to younger Mashlool mice, (i) worse balance beam performance; (ii) wider base of support; (iii) higher severity of seizures and resultant mortality; and (iv) no increased predisposition to hemiplegic or dystonic spells. In conclusion, (i) non-paroxysmal alternating hemiplegia of childhood manifestations show, on average over time, progression associated with severity of early-life non-paroxysmal disability and age. (ii) Progression also occurs in Mashlool mice, confirming that ATP1A3 disease can lead to age-related worsening. (iii) Clinical findings provide a basis for counselling patients and for designing therapeutic trials. Animal findings confirm a mouse model for investigation of underlying mechanisms of disease progression, and are also consistent with known mechanisms of ATP1A3-related neurodegeneration.
Project description:BACKGROUND:Mutations in the gene ATP1A3 have recently been identified to be prevalent in patients with alternating hemiplegia of childhood (AHC2). Based on a large series of patients with AHC, we set out to identify the spectrum of different mutations within the ATP1A3 gene and further establish any correlation with phenotype. METHODS:Clinical data from an international cohort of 155 AHC patients (84 females, 71 males; between 3 months and 52 years) were gathered using a specifically formulated questionnaire and analysed relative to the mutational ATP1A3 gene data for each patient. RESULTS:In total, 34 different ATP1A3 mutations were detected in 85 % (132/155) patients, seven of which were novel. In general, mutations were found to cluster into five different regions. The most frequent mutations included: p.Asp801Asn (43 %; 57/132), p.Glu815Lys (16 %; 22/132), and p.Gly947Arg (11 %; 15/132). Of these, p.Glu815Lys was associated with a severe phenotype, with more severe intellectual and motor disability. p.Asp801Asn appeared to confer a milder phenotypic expression, and p.Gly947Arg appeared to correlate with the most favourable prognosis, compared to the other two frequent mutations. Overall, the comparison of the clinical profiles suggested a gradient of severity between the three major mutations with differences in intellectual (p?=?0.029) and motor (p?=?0.039) disabilities being statistically significant. For patients with epilepsy, age at onset of seizures was earlier for patients with either p.Glu815Lys or p.Gly947Arg mutation, compared to those with p.Asp801Asn mutation (p?<?0.001). With regards to the five mutation clusters, some clusters appeared to correlate with certain clinical phenotypes. No statistically significant clinical correlations were found between patients with and without ATP1A3 mutations. CONCLUSIONS:Our results, demonstrate a highly variable clinical phenotype in patients with AHC2 that correlates with certain mutations and possibly clusters within the ATP1A3 gene. Our description of the clinical profile of patients with the most frequent mutations and the clinical picture of those with less common mutations confirms the results from previous studies, and further expands the spectrum of genotype-phenotype correlations. Our results may be useful to confirm diagnosis and may influence decisions to ensure appropriate early medical intervention in patients with AHC. They provide a stronger basis for the constitution of more homogeneous groups to be included in clinical trials.
Project description:STUDY OBJECTIVES:Patients with alternating hemiplegia of childhood (AHC) experience bouts of hemiplegia and other paroxysmal spells that resolve during sleep. Patients often have multiple comorbidities that could negatively affect sleep, yet sleep quality and sleep pathology in AHC are not well characterized. This study aimed to report sleep data from both polysomnography (PSG) and clinical evaluations in children with AHC. METHODS:We analyzed nocturnal PSG and clinical sleep evaluation results of a cohort of 22 consecutive pediatric patients with AHC who were seen in our AHC multidisciplinary clinic and who underwent evaluations according to our comprehensive AHC clinical pathway. This pathway includes, regardless of presenting symptoms, baseline PSG and evaluation by a board-certified pediatric sleep specialist. RESULTS:Out of 22 patients, 20 had at least one type of sleep problem. Six had obstructive sleep apnea as documented on polysomnogram, of whom two had no prior report of sleep-disordered breathing symptoms. Patients had abnormal mean overall apnea-hypopnea index of 5.8 (range 0-38.7) events/h and an abnormal mean arousal index of 15.0 (range 4.8-46.6) events/h. Based on sleep history, 16 patients had difficulty falling asleep, staying asleep, or both; 9 had behavioral insomnia of childhood; and 2 had delayed sleep-wake phase syndrome. CONCLUSIONS:Sleep dysfunction is common among children with AHC. Physicians should routinely screen for sleep pathology, with a low threshold to obtain a nocturnal PSG.
Project description:Alternating hemiplegia of childhood is a rare disorder caused by de novo mutations in the ATP1A3 gene, expressed in neurons and cardiomyocytes. As affected individuals may survive into adulthood, we use the term 'alternating hemiplegia'. The disorder is characterized by early-onset, recurrent, often alternating, hemiplegic episodes; seizures and non-paroxysmal neurological features also occur. Dysautonomia may occur during hemiplegia or in isolation. Premature mortality can occur in this patient group and is not fully explained. Preventable cardiorespiratory arrest from underlying cardiac dysrhythmia may be a cause. We analysed ECG recordings of 52 patients with alternating hemiplegia from nine countries: all had whole-exome, whole-genome, or direct Sanger sequencing of ATP1A3. Data on autonomic dysfunction, cardiac symptoms, medication, and family history of cardiac disease or sudden death were collected. All had 12-lead electrocardiogram recordings available for cardiac axis, cardiac interval, repolarization pattern, and J-point analysis. Where available, historical and prolonged single-lead electrocardiogram recordings during electrocardiogram-videotelemetry were analysed. Half the cohort (26/52) had resting 12-lead electrocardiogram abnormalities: 25/26 had repolarization (T wave) abnormalities. These abnormalities were significantly more common in people with alternating hemiplegia than in an age-matched disease control group of 52 people with epilepsy. The average corrected QT interval was significantly shorter in people with alternating hemiplegia than in the disease control group. J wave or J-point changes were seen in six people with alternating hemiplegia. Over half the affected cohort (28/52) had intraventricular conduction delay, or incomplete right bundle branch block, a much higher proportion than in the normal population or disease control cohort (P = 0.0164). Abnormalities in alternating hemiplegia were more common in those ?16 years old, compared with those <16 (P = 0.0095), even with a specific mutation (p.D801N; P = 0.045). Dynamic, beat-to-beat or electrocardiogram-to-electrocardiogram, changes were noted, suggesting the prevalence of abnormalities was underestimated. Electrocardiogram changes occurred independently of seizures or plegic episodes. Electrocardiogram abnormalities are common in alternating hemiplegia, have characteristics reflecting those of inherited cardiac channelopathies and most likely amount to impaired repolarization reserve. The dynamic electrocardiogram and neurological features point to periodic systemic decompensation in ATP1A3-expressing organs. Cardiac dysfunction may account for some of the unexplained premature mortality of alternating hemiplegia. Systematic cardiac investigation is warranted in alternating hemiplegia of childhood, as cardiac arrhythmic morbidity and mortality are potentially preventable.