Project description:Alternating hemiplegia of childhood (AHC) is a rare neurodevelopmental disorder characterized by recurrent paroxysmal hemiplegic attacks that affect one or the other side of the body. Up to 74% of patients with AHC have a pathologic variant in the ATP1A3 gene. After the introduction of next-generation sequencing, intermediate cases and atypical cases have expanded the clinical spectrum of ATP1A3-related disorders. Herein, we report the first case of AHC in Korea. A 33-year-old man visited our hospital with recurrent hemiplegic and dystonic episode after his first birthday. He was completely normal between episodes and did not have any ataxia, but brain magnetic resonance imaging showed cerebellar atrophy. He also had pes planovalgus deformity. Whole exome sequencing revealed a heterozygous G947R variant in the ATP1A3 gene (c.2839G > C, rs398122887), which is a known pathologic variant. This atypical case of AHC demonstrates the importance of the clinical approach in diagnosing ATP1A3-related disorders.
Project description:Alternating hemiplegia of childhood (AHC) is a rare and severe neurodevelopmental disorder characterized by recurrent hemiplegic episodes. Most AHC cases are sporadic and caused by de novo ATP1A3 pathogenic variants. In this study, the aim was to identify the origin of ATP1A3 pathogenic variants in a Chinese cohort. In 105 probands including 101 sporadic and 4 familial cases, 98 patients with ATP1A3 pathogenic variants were identified, and 96.8% were confirmed as de novo. Micro-droplet digital polymerase chain reaction was applied for detecting ATP1A3 mosaicism in 80 available families. In blood samples, four asymptomatic parents, including two paternal and two maternal, and one proband with a milder phenotype were identified as mosaicism. Six (7.5%) parental mosaicisms were identified in multiple tissues, including four previously identified in blood and two additional cases identified from paternal sperms. Mosaicism was identified in multiple tissues with varied mutant allele fractions (MAFs, 0.03%-33.03%). The results suggested that MAF of mosaicism may be related to phenotype severity. This is the first systematic report of ATP1A3 mosaicism in AHC and showed mosaicism as an unrecognized source of previously considered "de novo" AHC. Identifying ATP1A3 mosaicism provides more evidence for estimating recurrence risk and has implications in genetic counseling of AHC.
Project description:Missense mutations in ATP1A3 encoding Na(+),K(+)-ATPase ?3 have been identified as the primary cause of alternating hemiplegia of childhood (AHC), a motor disorder with onset typically before the age of 6 months. Affected children tend to be of short stature and can also have epilepsy, ataxia and learning disability. The Na(+),K(+)-ATPase has a well-known role in maintaining electrochemical gradients across cell membranes, but our understanding of how the mutations cause AHC is limited. Myshkin mutant mice carry an amino acid change (I810N) that affects the same position in Na(+),K(+)-ATPase ?3 as I810S found in AHC. Using molecular modelling, we show that the Myshkin and AHC mutations display similarly severe structural impacts on Na(+),K(+)-ATPase ?3, including upon the K(+) pore and predicted K(+) binding sites. Behavioural analysis of Myshkin mice revealed phenotypic abnormalities similar to symptoms of AHC, including motor dysfunction and cognitive impairment. 2-DG imaging of Myshkin mice identified compromised thalamocortical functioning that includes a deficit in frontal cortex functioning (hypofrontality), directly mirroring that reported in AHC, along with reduced thalamocortical functional connectivity. Our results thus provide validation for missense mutations in Na(+),K(+)-ATPase ?3 as a cause of AHC, and highlight Myshkin mice as a starting point for the exploration of disease mechanisms and novel treatments in AHC.
Project description:Alternating hemiplegia of childhood (AHC) is a rare, severe neurodevelopmental syndrome characterized by recurrent hemiplegic episodes and distinct neurological manifestations. AHC is usually a sporadic disorder and has unknown etiology. We used exome sequencing of seven patients with AHC and their unaffected parents to identify de novo nonsynonymous mutations in ATP1A3 in all seven individuals. In a subsequent sequence analysis of ATP1A3 in 98 other patients with AHC, we found that ATP1A3 mutations were likely to be responsible for at least 74% of the cases; we also identified one inherited mutation in a case of familial AHC. Notably, most AHC cases are caused by one of seven recurrent ATP1A3 mutations, one of which was observed in 36 patients. Unlike ATP1A3 mutations that cause rapid-onset dystonia-parkinsonism, AHC-causing mutations in this gene caused consistent reductions in ATPase activity without affecting the level of protein expression. This work identifies de novo ATP1A3 mutations as the primary cause of AHC and offers insight into disease pathophysiology by expanding the spectrum of phenotypes associated with mutations in ATP1A3.
Project description:BackgroundEpilepsy caused by a KCNQ2 gene mutation usually manifests as neonatal seizures during the first week of life. The genotypes and phenotypes of KCNQ2 mutations are noteworthy.MethodsThe KCNQ2 sequencings done were selected from 131 nonconsanguineous pediatric epileptic patients (age range: 2 days to 18 years) with nonlesional epilepsy.ResultsSeven (5%) index patients had verified KCNQ2 mutations: c.387+1 G>T (splicing), c.1741 C>T (p.Arg581*), c.740 C>T p.(Ser247Leu), c.853 C>A p.(Pro285Thr), c.860 C>T p.(Thr287Ile), c.1294 C>T p.(Arg432Cys), and c.1627 G>A p.(Val543Met). We found, after their paternity had been confirmed, that three patients had de novo p.(Ser247Leu), p.(Pro285Thr), and p.(Thr287Ile) mutations and neonatal-onset epileptic encephalopathy; however, their frequent seizures remitted after they turned 6 months old. Those with the c.387+1G>T (splicing), (p.Arg581*), and p.(Val543Met) mutations presented with benign familial neonatal convulsions. In addition to their relatives, 14 patients had documented KCNQ2 mutations, and 12 (86%) had neonatal seizures. The seizures of all five patients treated with oxcarbazepine remitted.ConclusionKCNQ2-related epilepsy led to varied outcomes (from benign to severe) in our patients. KCNQ2 mutations accounted for 13% of patients with seizure onset before 2 months old in our study. KCNQ2 mutations can cause different phenotypes in children. p.(Pro 285Thr) is a novel mutation, and the p.(Pro 285Thr), p.(Ser247Leu), and p.(Thr287Ile) variants can cause neonatal-onset epileptic encephalopathy.
Project description:Alternating hemiplegia of childhood is a rare neurodevelopmental disorder caused by ATP1A3 mutations. Some evidence for disease progression exists, but there are few systematic analyses. Here, we evaluate alternating hemiplegia of childhood progression in humans and in the D801N knock-in alternating hemiplegia of childhood mouse, Mashlool, model. This study performed an ambidirectional (prospective and retrospective data) analysis of an alternating hemiplegia of childhood patient cohort (n = 42, age 10.24 ± 1.48 years) seen at one US centre. To investigate potential disease progression, we used linear mixed effects models incorporating early and subsequent visits, and Wilcoxon Signed Rank test comparing first and last visits. Potential early-life clinical predictors were determined via multivariable regression. We also compared EEG background at first encounter and at last follow-up. We then performed a retrospective confirmation study on a multicentre cohort of alternating hemiplegia of childhood patients from France (n = 52). To investigate disease progression in the Mashlool mouse, we performed behavioural testing on a cohort of Mashlool- mice at prepubescent and adult ages (n = 11). Results: US patients, over time, demonstrated mild worsening of non-paroxysmal disability index scores, but not of paroxysmal disability index scores. Increasing age was a predictor of worse scores: P < 0.0001 for the non-paroxysmal disability index, intellectual disability scale and gross motor scores. Earliest non-paroxysmal disability index score was a predictor of last visit non-paroxysmal disability index score (P = 0.022), and earliest intellectual disability score was a predictor of last intellectual disability score (P = 0.035). More patients with EEG background slowing were noted at last follow-up as compared to initial (P = 0.015). Similar worsening of disease with age was also noted in the French cohort: age was a significant predictor of non-paroxysmal disability index score (P = 0.001) and first and last non-paroxysmal disability index score scores significantly differed (P = 0.002). In animal studies, adult Mashlool mice had, as compared to younger Mashlool mice, (i) worse balance beam performance; (ii) wider base of support; (iii) higher severity of seizures and resultant mortality; and (iv) no increased predisposition to hemiplegic or dystonic spells. In conclusion, (i) non-paroxysmal alternating hemiplegia of childhood manifestations show, on average over time, progression associated with severity of early-life non-paroxysmal disability and age. (ii) Progression also occurs in Mashlool mice, confirming that ATP1A3 disease can lead to age-related worsening. (iii) Clinical findings provide a basis for counselling patients and for designing therapeutic trials. Animal findings confirm a mouse model for investigation of underlying mechanisms of disease progression, and are also consistent with known mechanisms of ATP1A3-related neurodegeneration.
Project description:STUDY OBJECTIVES:Patients with alternating hemiplegia of childhood (AHC) experience bouts of hemiplegia and other paroxysmal spells that resolve during sleep. Patients often have multiple comorbidities that could negatively affect sleep, yet sleep quality and sleep pathology in AHC are not well characterized. This study aimed to report sleep data from both polysomnography (PSG) and clinical evaluations in children with AHC. METHODS:We analyzed nocturnal PSG and clinical sleep evaluation results of a cohort of 22 consecutive pediatric patients with AHC who were seen in our AHC multidisciplinary clinic and who underwent evaluations according to our comprehensive AHC clinical pathway. This pathway includes, regardless of presenting symptoms, baseline PSG and evaluation by a board-certified pediatric sleep specialist. RESULTS:Out of 22 patients, 20 had at least one type of sleep problem. Six had obstructive sleep apnea as documented on polysomnogram, of whom two had no prior report of sleep-disordered breathing symptoms. Patients had abnormal mean overall apnea-hypopnea index of 5.8 (range 0-38.7) events/h and an abnormal mean arousal index of 15.0 (range 4.8-46.6) events/h. Based on sleep history, 16 patients had difficulty falling asleep, staying asleep, or both; 9 had behavioral insomnia of childhood; and 2 had delayed sleep-wake phase syndrome. CONCLUSIONS:Sleep dysfunction is common among children with AHC. Physicians should routinely screen for sleep pathology, with a low threshold to obtain a nocturnal PSG.
Project description:Alternating hemiplegia of childhood is a rare disorder caused by de novo mutations in the ATP1A3 gene, expressed in neurons and cardiomyocytes. As affected individuals may survive into adulthood, we use the term 'alternating hemiplegia'. The disorder is characterized by early-onset, recurrent, often alternating, hemiplegic episodes; seizures and non-paroxysmal neurological features also occur. Dysautonomia may occur during hemiplegia or in isolation. Premature mortality can occur in this patient group and is not fully explained. Preventable cardiorespiratory arrest from underlying cardiac dysrhythmia may be a cause. We analysed ECG recordings of 52 patients with alternating hemiplegia from nine countries: all had whole-exome, whole-genome, or direct Sanger sequencing of ATP1A3. Data on autonomic dysfunction, cardiac symptoms, medication, and family history of cardiac disease or sudden death were collected. All had 12-lead electrocardiogram recordings available for cardiac axis, cardiac interval, repolarization pattern, and J-point analysis. Where available, historical and prolonged single-lead electrocardiogram recordings during electrocardiogram-videotelemetry were analysed. Half the cohort (26/52) had resting 12-lead electrocardiogram abnormalities: 25/26 had repolarization (T wave) abnormalities. These abnormalities were significantly more common in people with alternating hemiplegia than in an age-matched disease control group of 52 people with epilepsy. The average corrected QT interval was significantly shorter in people with alternating hemiplegia than in the disease control group. J wave or J-point changes were seen in six people with alternating hemiplegia. Over half the affected cohort (28/52) had intraventricular conduction delay, or incomplete right bundle branch block, a much higher proportion than in the normal population or disease control cohort (P = 0.0164). Abnormalities in alternating hemiplegia were more common in those ?16 years old, compared with those <16 (P = 0.0095), even with a specific mutation (p.D801N; P = 0.045). Dynamic, beat-to-beat or electrocardiogram-to-electrocardiogram, changes were noted, suggesting the prevalence of abnormalities was underestimated. Electrocardiogram changes occurred independently of seizures or plegic episodes. Electrocardiogram abnormalities are common in alternating hemiplegia, have characteristics reflecting those of inherited cardiac channelopathies and most likely amount to impaired repolarization reserve. The dynamic electrocardiogram and neurological features point to periodic systemic decompensation in ATP1A3-expressing organs. Cardiac dysfunction may account for some of the unexplained premature mortality of alternating hemiplegia. Systematic cardiac investigation is warranted in alternating hemiplegia of childhood, as cardiac arrhythmic morbidity and mortality are potentially preventable.
Project description:Alternating hemiplegia of childhood (AHC) is a rare neurological disorder affecting children with an onset before 18 months. Diagnostic clues include transient episodes of hemiplegia alternating in the laterality or quadriparesis, nystagmus and other paroxysmal attacks as tonic and dystonic spells. Epilepsy is also a common feature. In the past, a great effort has been done to understand the genetic basis of the disease leading to the discovery of mutations in the ATP1A3 gene encoding for the alpha3 subunit of Na+/K+ATPase, a protein already related to another disease named Rapid Onset Dystonia Parkinsonism (RDP). ATP1A3 mutations account for more than 70% of cases of AHC. In particular, three hotspot mutations account for about 60% of all cases, and these data have been confirmed in large population studies. Specifically, the p.Asp801Asn variant has been found to cause 30-43% of all cases, p.Glu815Lys is responsible for 16-35% of cases and p.Gly947Arg accounts for 8-15%. These three mutations are associated with different clinical phenotype in terms of symptoms, severity and prognosis. In vitro and in vivo models reveal that a crucial role of Na+/K+ATPase pump activity emerges in maintaining a correct membrane potential, survival and homeostasis of neurons. Herein, we attempt to summarize all clinical, genetic and molecular aspects of AHC considering ATP1A3 as its primary disease-causing determinant.