Unknown

Dataset Information

0

SIMS of Organic Materials-Interface Location in Argon Gas Cluster Depth Profiles Using Negative Secondary Ions.


ABSTRACT: A procedure has been established to define the interface position in depth profiles accurately when using secondary ion mass spectrometry and the negative secondary ions. The interface position varies strongly with the extent of the matrix effect and so depends on the secondary ion measured. Intensity profiles have been measured at both fluorenylmethyloxycarbonyl-L-pentafluorophenylalanine (FMOC) to Irganox 1010 and Irganox 1010 to FMOC interfaces for many secondary ions. These profiles show separations of the two interfaces that vary over some 10 nm depending on the secondary ion selected. The shapes of these profiles are strongly governed by matrix effects, slightly weakened by a long wavelength roughening. The matrix effects are separately measured using homogeneous, known mixtures of these two materials. Removal of the matrix and roughening effects give consistent compositional profiles for all ions that are described by an integrated exponentially modified Gaussian (EMG) profile. Use of a simple integrated Gaussian may lead to significant errors. The average interface positions in the compositional profiles are determined to standard uncertainties of 0.19 and 0.14 nm, respectively, using the integrated EMG function. Alternatively, and more simply, it is shown that interface positions and profiles may be deduced from data for several secondary ions with measured matrix factors by simply extrapolating the result to ??=?0. Care must be taken in quoting interface resolutions since those measured for predominantly Gaussian interfaces with ? above or below zero, without correction, appear significantly better than the true resolution. Graphical Abstract ?.

SUBMITTER: Havelund R 

PROVIDER: S-EPMC5889422 | biostudies-literature | 2018 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

SIMS of Organic Materials-Interface Location in Argon Gas Cluster Depth Profiles Using Negative Secondary Ions.

Havelund R R   Seah M P MP   Tiddia M M   Gilmore I S IS  

Journal of the American Society for Mass Spectrometry 20180221 4


A procedure has been established to define the interface position in depth profiles accurately when using secondary ion mass spectrometry and the negative secondary ions. The interface position varies strongly with the extent of the matrix effect and so depends on the secondary ion measured. Intensity profiles have been measured at both fluorenylmethyloxycarbonyl-L-pentafluorophenylalanine (FMOC) to Irganox 1010 and Irganox 1010 to FMOC interfaces for many secondary ions. These profiles show sep  ...[more]

Similar Datasets

| S-EPMC4155327 | biostudies-literature
| S-EPMC6427474 | biostudies-literature
| S-EPMC4376248 | biostudies-literature
| S-EPMC4532557 | biostudies-literature
| S-EPMC8243396 | biostudies-literature
| S-EPMC6566215 | biostudies-literature
| S-EPMC2800856 | biostudies-literature
| S-EPMC8190772 | biostudies-literature
| S-EPMC5012256 | biostudies-literature
| S-EPMC6200352 | biostudies-literature