Unknown

Dataset Information

0

Lithium diffusion in Li5FeO4.


ABSTRACT: The anti-fluorite type Li5FeO4 has attracted significant interest as a potential cathode material for Li ion batteries due to its high Li content and electrochemical performance. Atomic scale simulation techniques have been employed to study the defects and Li ion migration in Li5FeO4. The calculations suggest that the most favorable intrinsic defect type is calculated to be the cation anti-site defect, in which Li+ and Fe3+ ions exchange positions. Li Frenkel is also found to be lower in this material (0.85?eV/defect). Long range lithium diffusion paths were constructed in Li5FeO4 and it is confirmed that the lower migration paths are three dimensional with the lowest activation energy of migration at 0.45?eV. Here we show that doping by Si on the Fe site is energetically favourable and an efficient way to introduce a high concentration of lithium vacancies. The introduction of Si increases the migration energy barrier of Li in the vicinity of the dopant to 0.59?eV. Nevertheless, the introduction of Si is positive for the diffusivity as the migration energy barrier increase is lower less than that of the lithium Frenkel process, therefore the activation energy of Li diffusion.

SUBMITTER: Kuganathan N 

PROVIDER: S-EPMC5895795 | biostudies-literature | 2018 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Lithium diffusion in Li<sub>5</sub>FeO<sub>4</sub>.

Kuganathan Navaratnarajah N   Iyngaran Poobalasuntharam P   Chroneos Alexander A  

Scientific reports 20180411 1


The anti-fluorite type Li<sub>5</sub>FeO<sub>4</sub> has attracted significant interest as a potential cathode material for Li ion batteries due to its high Li content and electrochemical performance. Atomic scale simulation techniques have been employed to study the defects and Li ion migration in Li<sub>5</sub>FeO<sub>4</sub>. The calculations suggest that the most favorable intrinsic defect type is calculated to be the cation anti-site defect, in which Li<sup>+</sup> and Fe<sup>3+</sup> ions  ...[more]

Similar Datasets

| S-EPMC6648275 | biostudies-literature
| S-EPMC8029578 | biostudies-literature
| S-EPMC10932188 | biostudies-literature
| S-EPMC5396188 | biostudies-literature
| S-EPMC11005696 | biostudies-literature
| S-EPMC8179136 | biostudies-literature
| S-EPMC6946265 | biostudies-literature
| S-EPMC9050422 | biostudies-literature
| S-EPMC5240091 | biostudies-literature
| S-EPMC10107143 | biostudies-literature