Unknown

Dataset Information

0

Optical characterization of surface adlayers and their compositional demixing at the nanoscale.


ABSTRACT: Under ambient conditions, the behavior of a solid surface is often dominated by a molecularly thin adsorbed layer (adlayer) of small molecules. Here we develop an optical approach to unveil the nanoscale structure and composition of small-molecule adlayers on glass surfaces through spectrally resolved super-resolution microscopy. By recording the images and emission spectra of millions of individual solvatochromic molecules that turn fluorescent in the adlayer phase, we obtain ~30?nm spatial resolution and achieve concurrent measurement of local polarity. This allows us to establish that the adlayer dimensionality gradually increases through a sequence of 0D (nanodroplets), 1D (nano-lines), and 2D (films) for liquids of increasing polarity. Moreover, we find that in adlayers, a solution of two miscible liquids spontaneously demixes into nanodroplets of different compositions that correlate strongly with droplet size and location. We thus reveal unexpectedly rich structural and compositional behaviors of surface adlayers at the nanoscale.

SUBMITTER: Xiang L 

PROVIDER: S-EPMC5897338 | biostudies-literature | 2018 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Optical characterization of surface adlayers and their compositional demixing at the nanoscale.

Xiang Limin L   Wojcik Michal M   Kenny Samuel J SJ   Yan Rui R   Moon Seonah S   Li Wan W   Xu Ke K  

Nature communications 20180412 1


Under ambient conditions, the behavior of a solid surface is often dominated by a molecularly thin adsorbed layer (adlayer) of small molecules. Here we develop an optical approach to unveil the nanoscale structure and composition of small-molecule adlayers on glass surfaces through spectrally resolved super-resolution microscopy. By recording the images and emission spectra of millions of individual solvatochromic molecules that turn fluorescent in the adlayer phase, we obtain ~30 nm spatial res  ...[more]

Similar Datasets

| S-EPMC5506072 | biostudies-literature
| S-EPMC4485457 | biostudies-literature
| S-EPMC2932581 | biostudies-literature
| S-EPMC4754639 | biostudies-literature
| S-EPMC7291348 | biostudies-literature
| S-EPMC3211179 | biostudies-literature
| S-EPMC7794097 | biostudies-literature
| S-EPMC4557343 | biostudies-literature
| S-EPMC6176844 | biostudies-other
| S-EPMC6361725 | biostudies-literature