Ontology highlight
ABSTRACT:
SUBMITTER: Sczyrba A
PROVIDER: S-EPMC5903868 | biostudies-literature | 2017 Nov
REPOSITORIES: biostudies-literature
Sczyrba Alexander A Hofmann Peter P Belmann Peter P Koslicki David D Janssen Stefan S Dröge Johannes J Gregor Ivan I Majda Stephan S Fiedler Jessika J Dahms Eik E Bremges Andreas A Fritz Adrian A Garrido-Oter Ruben R Jørgensen Tue Sparholt TS Shapiro Nicole N Blood Philip D PD Gurevich Alexey A Bai Yang Y Turaev Dmitrij D DeMaere Matthew Z MZ Chikhi Rayan R Nagarajan Niranjan N Quince Christopher C Meyer Fernando F Balvočiūtė Monika M Hansen Lars Hestbjerg LH Sørensen Søren J SJ Chia Burton K H BKH Denis Bertrand B Froula Jeff L JL Wang Zhong Z Egan Robert R Don Kang Dongwan D Cook Jeffrey J JJ Deltel Charles C Beckstette Michael M Lemaitre Claire C Peterlongo Pierre P Rizk Guillaume G Lavenier Dominique D Wu Yu-Wei YW Singer Steven W SW Jain Chirag C Strous Marc M Klingenberg Heiner H Meinicke Peter P Barton Michael D MD Lingner Thomas T Lin Hsin-Hung HH Liao Yu-Chieh YC Silva Genivaldo Gueiros Z GGZ Cuevas Daniel A DA Edwards Robert A RA Saha Surya S Piro Vitor C VC Renard Bernhard Y BY Pop Mihai M Klenk Hans-Peter HP Göker Markus M Kyrpides Nikos C NC Woyke Tanja T Vorholt Julia A JA Schulze-Lefert Paul P Rubin Edward M EM Darling Aaron E AE Rattei Thomas T McHardy Alice C AC
Nature methods 20171002 11
Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly a ...[more]