Unknown

Dataset Information

0

Critical Assessment of Metagenome Interpretation: the second round of challenges.


ABSTRACT: Evaluating metagenomic software is key for optimizing metagenome interpretation and focus of the Initiative for the Critical Assessment of Metagenome Interpretation (CAMI). The CAMI II challenge engaged the community to assess methods on realistic and complex datasets with long- and short-read sequences, created computationally from around 1,700 new and known genomes, as well as 600 new plasmids and viruses. Here we analyze 5,002 results by 76 program versions. Substantial improvements were seen in assembly, some due to long-read data. Related strains still were challenging for assembly and genome recovery through binning, as was assembly quality for the latter. Profilers markedly matured, with taxon profilers and binners excelling at higher bacterial ranks, but underperforming for viruses and Archaea. Clinical pathogen detection results revealed a need to improve reproducibility. Runtime and memory usage analyses identified efficient programs, including top performers with other metrics. The results identify challenges and guide researchers in selecting methods for analyses.

SUBMITTER: Meyer F 

PROVIDER: S-EPMC9007738 | biostudies-literature | 2022 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Critical Assessment of Metagenome Interpretation: the second round of challenges.

Meyer Fernando F   Fritz Adrian A   Deng Zhi-Luo ZL   Koslicki David D   Lesker Till Robin TR   Gurevich Alexey A   Robertson Gary G   Alser Mohammed M   Antipov Dmitry D   Beghini Francesco F   Bertrand Denis D   Brito Jaqueline J JJ   Brown C Titus CT   Buchmann Jan J   Buluç Aydin A   Chen Bo B   Chikhi Rayan R   Clausen Philip T L C PTLC   Cristian Alexandru A   Dabrowski Piotr Wojciech PW   Darling Aaron E AE   Egan Rob R   Eskin Eleazar E   Georganas Evangelos E   Goltsman Eugene E   Gray Melissa A MA   Hansen Lars Hestbjerg LH   Hofmeyr Steven S   Huang Pingqin P   Irber Luiz L   Jia Huijue H   Jørgensen Tue Sparholt TS   Kieser Silas D SD   Klemetsen Terje T   Kola Axel A   Kolmogorov Mikhail M   Korobeynikov Anton A   Kwan Jason J   LaPierre Nathan N   Lemaitre Claire C   Li Chenhao C   Limasset Antoine A   Malcher-Miranda Fabio F   Mangul Serghei S   Marcelino Vanessa R VR   Marchet Camille C   Marijon Pierre P   Meleshko Dmitry D   Mende Daniel R DR   Milanese Alessio A   Nagarajan Niranjan N   Nissen Jakob J   Nurk Sergey S   Oliker Leonid L   Paoli Lucas L   Peterlongo Pierre P   Piro Vitor C VC   Porter Jacob S JS   Rasmussen Simon S   Rees Evan R ER   Reinert Knut K   Renard Bernhard B   Robertsen Espen Mikal EM   Rosen Gail L GL   Ruscheweyh Hans-Joachim HJ   Sarwal Varuni V   Segata Nicola N   Seiler Enrico E   Shi Lizhen L   Sun Fengzhu F   Sunagawa Shinichi S   Sørensen Søren Johannes SJ   Thomas Ashleigh A   Tong Chengxuan C   Trajkovski Mirko M   Tremblay Julien J   Uritskiy Gherman G   Vicedomini Riccardo R   Wang Zhengyang Z   Wang Ziye Z   Wang Zhong Z   Warren Andrew A   Willassen Nils Peder NP   Yelick Katherine K   You Ronghui R   Zeller Georg G   Zhao Zhengqiao Z   Zhu Shanfeng S   Zhu Jie J   Garrido-Oter Ruben R   Gastmeier Petra P   Hacquard Stephane S   Häußler Susanne S   Khaledi Ariane A   Maechler Friederike F   Mesny Fantin F   Radutoiu Simona S   Schulze-Lefert Paul P   Smit Nathiana N   Strowig Till T   Bremges Andreas A   Sczyrba Alexander A   McHardy Alice Carolyn AC  

Nature methods 20220408 4


Evaluating metagenomic software is key for optimizing metagenome interpretation and focus of the Initiative for the Critical Assessment of Metagenome Interpretation (CAMI). The CAMI II challenge engaged the community to assess methods on realistic and complex datasets with long- and short-read sequences, created computationally from around 1,700 new and known genomes, as well as 600 new plasmids and viruses. Here we analyze 5,002 results by 76 program versions. Substantial improvements were seen  ...[more]

Similar Datasets

| S-EPMC6040144 | biostudies-literature
| S-EPMC5903868 | biostudies-literature
| S-EPMC4569658 | biostudies-literature
| S-EPMC7047641 | biostudies-literature
| S-EPMC5600620 | biostudies-literature
| S-EPMC9677465 | biostudies-literature
| S-EPMC6927249 | biostudies-literature
| S-EPMC10843301 | biostudies-literature
| S-EPMC5897042 | biostudies-literature
| S-EPMC8726744 | biostudies-literature