Unknown

Dataset Information

0

Bayesian Hierarchical Random Effects Models in Forensic Science.


ABSTRACT: Statistical modeling of the evaluation of evidence with the use of the likelihood ratio has a long history. It dates from the Dreyfus case at the end of the nineteenth century through the work at Bletchley Park in the Second World War to the present day. The development received a significant boost in 1977 with a seminal work by Dennis Lindley which introduced a Bayesian hierarchical random effects model for the evaluation of evidence with an example of refractive index measurements on fragments of glass. Many models have been developed since then. The methods have now been sufficiently well-developed and have become so widespread that it is timely to try and provide a software package to assist in their implementation. With that in mind, a project (SAILR: Software for the Analysis and Implementation of Likelihood Ratios) was funded by the European Network of Forensic Science Institutes through their Monopoly programme to develop a software package for use by forensic scientists world-wide that would assist in the statistical analysis and implementation of the approach based on likelihood ratios. It is the purpose of this document to provide a short review of a small part of this history. The review also provides a background, or landscape, for the development of some of the models within the SAILR package and references to SAILR as made as appropriate.

SUBMITTER: Aitken CGG 

PROVIDER: S-EPMC5911710 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bayesian Hierarchical Random Effects Models in Forensic Science.

Aitken Colin G G CGG  

Frontiers in genetics 20180416


Statistical modeling of the evaluation of evidence with the use of the likelihood ratio has a long history. It dates from the Dreyfus case at the end of the nineteenth century through the work at Bletchley Park in the Second World War to the present day. The development received a significant boost in 1977 with a seminal work by Dennis Lindley which introduced a Bayesian hierarchical random effects model for the evaluation of evidence with an example of refractive index measurements on fragments  ...[more]

Similar Datasets

| S-EPMC8274575 | biostudies-literature
| S-EPMC7334157 | biostudies-literature
| S-EPMC9964742 | biostudies-literature
| S-EPMC3276744 | biostudies-literature
| S-EPMC2730548 | biostudies-literature
| S-EPMC6884669 | biostudies-literature
| S-EPMC6327440 | biostudies-literature
| S-EPMC3606292 | biostudies-literature
| S-EPMC6019237 | biostudies-literature
| S-EPMC6294362 | biostudies-literature