Ontology highlight
ABSTRACT:
SUBMITTER: Rudolph A
PROVIDER: S-EPMC5913605 | biostudies-literature | 2018 Apr
REPOSITORIES: biostudies-literature
Rudolph Anja A Song Minsun M Brook Mark N MN Milne Roger L RL Mavaddat Nasim N Michailidou Kyriaki K Bolla Manjeet K MK Wang Qin Q Dennis Joe J Wilcox Amber N AN Hopper John L JL Southey Melissa C MC Keeman Renske R Fasching Peter A PA Beckmann Matthias W MW Gago-Dominguez Manuela M Castelao Jose E JE Guénel Pascal P Truong Thérèse T Bojesen Stig E SE Flyger Henrik H Brenner Hermann H Arndt Volker V Brauch Hiltrud H Brüning Thomas T Mannermaa Arto A Kosma Veli-Matti VM Lambrechts Diether D Keupers Machteld M Couch Fergus J FJ Vachon Celine C Giles Graham G GG MacInnis Robert J RJ Figueroa Jonine J Brinton Louise L Czene Kamila K Brand Judith S JS Gabrielson Marike M Humphreys Keith K Cox Angela A Cross Simon S SS Dunning Alison M AM Orr Nick N Swerdlow Anthony A Hall Per P Pharoah Paul D P PDP Schmidt Marjanka K MK Easton Douglas F DF Chatterjee Nilanjan N Chang-Claude Jenny J García-Closas Montserrat M
International journal of epidemiology 20180401 2
<h4>Background</h4>Polygenic risk scores (PRS) for breast cancer can be used to stratify the population into groups at substantially different levels of risk. Combining PRS and environmental risk factors will improve risk prediction; however, integrating PRS into risk prediction models requires evaluation of their joint association with known environmental risk factors.<h4>Methods</h4>Analyses were based on data from 20 studies; datasets analysed ranged from 3453 to 23 104 invasive breast cancer ...[more]