Unknown

Dataset Information

0

In vitro synthesis of gene-length single-stranded DNA.


ABSTRACT: Single-stranded DNA (ssDNA) increases the likelihood of homology directed repair with reduced cellular toxicity. However, ssDNA synthesis strategies are limited by the maximum length attainable, ranging from a few hundred nucleotides for chemical synthesis to a few thousand nucleotides for enzymatic synthesis, as well as limited control over nucleotide composition. Here, we apply purely enzymatic synthesis to generate ssDNA greater than 15 kilobases (kb) using asymmetric PCR, and illustrate the incorporation of diverse modified nucleotides for therapeutic and theranostic applications.

SUBMITTER: Veneziano R 

PROVIDER: S-EPMC5916881 | biostudies-literature | 2018 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

In vitro synthesis of gene-length single-stranded DNA.

Veneziano Rémi R   Shepherd Tyson R TR   Ratanalert Sakul S   Bellou Leila L   Tao Chaoqun C   Bathe Mark M  

Scientific reports 20180425 1


Single-stranded DNA (ssDNA) increases the likelihood of homology directed repair with reduced cellular toxicity. However, ssDNA synthesis strategies are limited by the maximum length attainable, ranging from a few hundred nucleotides for chemical synthesis to a few thousand nucleotides for enzymatic synthesis, as well as limited control over nucleotide composition. Here, we apply purely enzymatic synthesis to generate ssDNA greater than 15 kilobases (kb) using asymmetric PCR, and illustrate the  ...[more]

Similar Datasets

| S-EPMC5784857 | biostudies-literature
| S-EPMC7145709 | biostudies-literature
| S-EPMC4937444 | biostudies-literature
| S-EPMC7073533 | biostudies-literature
| S-EPMC10033958 | biostudies-literature
| S-EPMC2711352 | biostudies-literature
| S-EPMC7694086 | biostudies-literature
| S-EPMC5499585 | biostudies-literature
| S-EPMC7234795 | biostudies-literature
| S-EPMC5821389 | biostudies-literature