Unknown

Dataset Information

0

Protein kinase N1 critically regulates cerebellar development and long-term function.


ABSTRACT: Increasing evidence suggests that synapse dysfunctions are a major determinant of several neurodevelopmental and neurodegenerative diseases. Here we identify protein kinase N1 (PKN1) as a novel key player in fine-tuning the balance between axonal outgrowth and presynaptic differentiation in the parallel fiber-forming (PF-forming) cerebellar granule cells (Cgcs). Postnatal Pkn1-/- animals showed a defective PF-Purkinje cell (PF-PC) synapse formation. In vitro, Pkn1-/- Cgcs exhibited deregulated axonal outgrowth, elevated AKT phosphorylation, and higher levels of neuronal differentiation-2 (NeuroD2), a transcription factor preventing presynaptic maturation. Concomitantly, Pkn1-/- Cgcs had a reduced density of presynaptic sites. By inhibiting AKT with MK-2206 and siRNA-mediated knockdown, we found that AKT hyperactivation is responsible for the elongated axons, higher NeuroD2 levels, and reduced density of presynaptic specifications in Pkn1-/- Cgcs. In line with our in vitro data, Pkn1-/- mice showed AKT hyperactivation, elevated NeuroD2 levels, and reduced expression of PF-PC synaptic markers during stages of PF maturation in vivo. The long-term effect of Pkn1 knockout was further seen in cerebellar atrophy and mild ataxia. In summary, our results demonstrate that PKN1 functions as a developmentally active gatekeeper of AKT activity, thereby fine-tuning axonal outgrowth and presynaptic differentiation of Cgcs and subsequently the correct PF-PC synapse formation.

SUBMITTER: zur Nedden S 

PROVIDER: S-EPMC5919825 | biostudies-literature | 2018 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Protein kinase N1 critically regulates cerebellar development and long-term function.

zur Nedden Stephanie S   Eith Rafaela R   Schwarzer Christoph C   Zanetti Lucia L   Seitter Hartwig H   Fresser Friedrich F   Koschak Alexandra A   Cameron Angus Jm AJ   Parker Peter J PJ   Baier Gottfried G   Baier-Bitterlich Gabriele G  

The Journal of clinical investigation 20180416 5


Increasing evidence suggests that synapse dysfunctions are a major determinant of several neurodevelopmental and neurodegenerative diseases. Here we identify protein kinase N1 (PKN1) as a novel key player in fine-tuning the balance between axonal outgrowth and presynaptic differentiation in the parallel fiber-forming (PF-forming) cerebellar granule cells (Cgcs). Postnatal Pkn1-/- animals showed a defective PF-Purkinje cell (PF-PC) synapse formation. In vitro, Pkn1-/- Cgcs exhibited deregulated a  ...[more]

Similar Datasets

| S-EPMC4236409 | biostudies-literature
| S-EPMC7886330 | biostudies-literature
| S-EPMC1769409 | biostudies-literature
| S-EPMC4122232 | biostudies-other
| S-EPMC3712000 | biostudies-literature
| S-EPMC3890858 | biostudies-other
| S-EPMC6649687 | biostudies-literature
| S-EPMC327207 | biostudies-literature
| S-EPMC8323969 | biostudies-literature
| S-EPMC8213608 | biostudies-literature