Unknown

Dataset Information

0

The FBH family of bHLH transcription factors controls ACC synthase expression in sugarcane.


ABSTRACT: Ethylene is a phytohormone involved in the regulation of several aspects of plant development and in responses to biotic and abiotic stress. The effects of exogenous application of ethylene to sugarcane plants are well characterized as growth inhibition of immature internodes and stimulation of sucrose accumulation. However, the molecular network underlying the control of ethylene biosynthesis in sugarcane remains largely unknown. The chemical reaction catalyzed by 1-aminocyclopropane-1-carboxylic acid synthase (ACS) is an important rate-limiting step that regulates ethylene production in plants. In this work, using a yeast one-hybrid approach, we identified three basic helix-loop-helix (bHLH) transcription factors, homologs of Arabidopsis FBH (FLOWERING BHLH), that bind to the promoter of ScACS2 (Sugarcane ACS2), a sugarcane type 3 ACS isozyme gene. Protein-protein interaction assays showed that sugarcane FBH1 (ScFBH1), ScFBH2, and ScFBH3 form homo- and heterodimers in the nucleus. Gene expression analysis revealed that ScFBHs and ScACS2 transcripts are more abundant in maturing internodes during afternoon and night. In addition, Arabidopsis functional analysis demonstrated that FBH controls ethylene production by regulating transcript levels of ACS7, a homolog of ScACS2. These results indicate that ScFBHs transcriptionally regulate ethylene biosynthesis in maturing internodes of sugarcane.

SUBMITTER: Alessio VM 

PROVIDER: S-EPMC5920332 | biostudies-literature | 2018 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

The FBH family of bHLH transcription factors controls ACC synthase expression in sugarcane.

Alessio Valter Miotto VM   Cavaçana Natale N   Dantas Luíza Lane de Barros LLB   Lee Nayoung N   Hotta Carlos Takeshi CT   Imaizumi Takato T   Menossi Marcelo M  

Journal of experimental botany 20180401 10


Ethylene is a phytohormone involved in the regulation of several aspects of plant development and in responses to biotic and abiotic stress. The effects of exogenous application of ethylene to sugarcane plants are well characterized as growth inhibition of immature internodes and stimulation of sucrose accumulation. However, the molecular network underlying the control of ethylene biosynthesis in sugarcane remains largely unknown. The chemical reaction catalyzed by 1-aminocyclopropane-1-carboxyl  ...[more]

Similar Datasets

| S-EPMC4378193 | biostudies-literature
| S-EPMC5450219 | biostudies-literature
| S-EPMC283507 | biostudies-literature
| S-EPMC8431614 | biostudies-literature
| S-EPMC5382129 | biostudies-literature
| S-EPMC7251199 | biostudies-literature
| S-EPMC6627405 | biostudies-literature
| S-EPMC2413276 | biostudies-literature
| S-EPMC5111884 | biostudies-literature
| S-EPMC4837222 | biostudies-literature