Unknown

Dataset Information

0

Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): Direct Generation of Pseudo-CT Images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI.


ABSTRACT: Accurate quantification of uptake on PET images depends on accurate attenuation correction in reconstruction. Current MR-based attenuation correction methods for body PET use a fat and water map derived from a 2-echo Dixon MRI sequence in which bone is neglected. Ultrashort-echo-time or zero-echo-time (ZTE) pulse sequences can capture bone information. We propose the use of patient-specific multiparametric MRI consisting of Dixon MRI and proton-density-weighted ZTE MRI to directly synthesize pseudo-CT images with a deep learning model: we call this method ZTE and Dixon deep pseudo-CT (ZeDD CT). Methods: Twenty-six patients were scanned using an integrated 3-T time-of-flight PET/MRI system. Helical CT images of the patients were acquired separately. A deep convolutional neural network was trained to transform ZTE and Dixon MR images into pseudo-CT images. Ten patients were used for model training, and 16 patients were used for evaluation. Bone and soft-tissue lesions were identified, and the SUVmax was measured. The root-mean-squared error (RMSE) was used to compare the MR-based attenuation correction with the ground-truth CT attenuation correction. Results: In total, 30 bone lesions and 60 soft-tissue lesions were evaluated. The RMSE in PET quantification was reduced by a factor of 4 for bone lesions (10.24% for Dixon PET and 2.68% for ZeDD PET) and by a factor of 1.5 for soft-tissue lesions (6.24% for Dixon PET and 4.07% for ZeDD PET). Conclusion: ZeDD CT produces natural-looking and quantitatively accurate pseudo-CT images and reduces error in pelvic PET/MRI attenuation correction compared with standard methods.

SUBMITTER: Leynes AP 

PROVIDER: S-EPMC5932530 | biostudies-literature | 2018 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): Direct Generation of Pseudo-CT Images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI.

Leynes Andrew P AP   Yang Jaewon J   Wiesinger Florian F   Kaushik Sandeep S SS   Shanbhag Dattesh D DD   Seo Youngho Y   Hope Thomas A TA   Larson Peder E Z PEZ  

Journal of nuclear medicine : official publication, Society of Nuclear Medicine 20171030 5


Accurate quantification of uptake on PET images depends on accurate attenuation correction in reconstruction. Current MR-based attenuation correction methods for body PET use a fat and water map derived from a 2-echo Dixon MRI sequence in which bone is neglected. Ultrashort-echo-time or zero-echo-time (ZTE) pulse sequences can capture bone information. We propose the use of patient-specific multiparametric MRI consisting of Dixon MRI and proton-density-weighted ZTE MRI to directly synthesize pse  ...[more]

Similar Datasets

| S-EPMC6910626 | biostudies-literature
| S-EPMC7229007 | biostudies-literature
| S-EPMC8299691 | biostudies-literature
| S-EPMC5877454 | biostudies-literature
| S-EPMC10785227 | biostudies-literature
| S-EPMC7375929 | biostudies-literature
| S-EPMC6949410 | biostudies-literature
| S-EPMC8035179 | biostudies-literature
| S-EPMC8263843 | biostudies-literature
| S-EPMC5603333 | biostudies-literature