ABSTRACT: Background:MicroRNAs (miRNAs) are involved in many biological processes, including tumor suppression. Multiple studies have shown an association between the miRNA-196a2 rs11614913 and miRNA-146a rs2910164 polymorphisms and cancer risk. However, the implications of the reported data are debatable and inconclusive. Materials and methods:Relevant articles were retrieved from the PubMed, EMBASE, China National Knowledge Infrastructure, and WanFang databases from January 1, 2007, to April 30, 2017. Studies were assessed based on designated inclusion and exclusion criteria, and data were manually extracted from relevant studies by two investigators. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to explore the association between two single-nucleotide polymorphisms (SNPs) in miRNAs and lung cancer susceptibility. Results:Nine eligible articles were included, consisting of 3,101 cancer cases and 3,234 controls for miRNA-196a2 rs11614913, and 3,483 cases and 3,578 controls for miRNA-146a rs2910164. For studies evaluating miRNA-196a2 rs11614913, significant associations with lung cancer risk were discovered. Overall, the pooled analysis showed that miRNA-196a2 rs11614913 was associated with a decreased cancer risk (CC vs TT: OR = 1.25, 95% CI: 1.09-1.44; CT vs TT: OR = 1.26, 95% CI: 1.03-1.53). For miRNA-146a rs2910164, only the CC genotype was found to be associated with high lung cancer risk (OR = 1.30, 95% CI: 1.13-1.49). Subgroup analyses based on ethnicity, source of control group, and country indicated that there were strong associations between miRNA-146a rs2910164 and cancer risk. Conclusion:The results indicated that lung cancer risk was significantly associated with miRNA-196a2 rs11614913 and miRNA-146a rs2910164. These two common SNPs in miRNAs may be potential biomarkers of lung cancer.