Homophily, heterophily and the diversity of messages among decision-making individuals.
Ontology highlight
ABSTRACT: To better understand the intriguing mechanisms behind cooperation among decision-making individuals, we study the simple yet appealing use of preplay communication or cheap talk in evolutionary games, when players are able to choose strategies based on whether an opponent sends the same message as they do. So when playing games, in addition to pure cooperation and defection, players have two new strategies in this setting: homophilic (respectively, heterophilic) cooperation which is to cooperate (respectively, defect) only with those who send the same message as they do. We reveal the intrinsic qualities of individuals playing the two strategies and show that under the replicator dynamics, homophilic cooperators engage in a battle of messages and will become dominated by whichever message is the most prevalent at the start, while populations of heterophilic cooperators exhibit a more harmonious behaviour, converging to a state of maximal diversity. Then we take Prisoner's Dilemma (PD) as the base of the cheap-talk game and show that the hostility of heterophilics to individuals with similar messages leaves no possibility for pure cooperators to survive in a population of the two, whereas the one-message dominance of homophilics allows for pure cooperators with the same tag as the dominant homophilics to coexist in the population, demonstrating that homophilics are more cooperative than heterophilics. Finally, we generalize an existing convergence result on population shares associated with weakly dominated strategies to a broadly applicable theorem and complete previous research on PD games with preplay communication by proving that the frequencies of all types of cooperators, i.e. pure, homophilic and heterophilic, converge to zero in the face of defectors. This implies homophily and heterophily cannot facilitate the long-term survival of cooperation in this setting, which urges studying cheap-talk games under other reproduction dynamics.
SUBMITTER: Ramazi P
PROVIDER: S-EPMC5936958 | biostudies-literature | 2018 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA