Unknown

Dataset Information

0

Claudin 11 regulates bone homeostasis via bidirectional EphB4-EphrinB2 signaling.


ABSTRACT: Claudins (Cldns) are well-established components of tight junctions (TJs) that play a pivotal role in the modulation of paracellular permeability. Several studies have explored the physiologic aspects of Cldn family members in bone metabolism. However, the effect of Cldn11, a major component of central nervous system myelin, on bone homeostasis has not been reported. In this study, we demonstrate that Cldn11 is a potential target for bone disease therapeutics as a dual modulator of osteogenesis enhancement and osteoclastogenesis inhibition. We found that Cldn11 played a negative role in the receptor activator of nuclear factor kappa B ligand-induced osteoclast (OC) differentiation and function by downregulating the phosphorylated form of extracellular signal-regulated kinase (ERK), Bruton's tyrosine kinase, and phospholipase C gamma 2, in turn impeding c-Fos and nuclear factor in activated T cell c1 expression. The enhancement of osteoblast (OB) differentiation by positive feedback of Cldn11 was achieved through the phosphorylation of Smad1/5/8, ERK, and c-Jun amino-terminal kinase. Importantly, this Cldn11-dependent dual event in bone metabolism arose from targeting EphrinB2 ligand reverse signaling in OC and EphB4 receptor forward signaling in OB. In agreement with these in vitro effects, subcutaneous injection of Cldn11 recombinant protein exerted anti-resorbing effects in a lipopolysaccharide-induced calvarial bone loss mouse model and increased osteogenic activity in a calvarial bone formation model. These findings suggest that Cldn11 is a novel regulator in bone homeostasis.

SUBMITTER: Baek JM 

PROVIDER: S-EPMC5938033 | biostudies-literature | 2018 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Claudin 11 regulates bone homeostasis via bidirectional EphB4-EphrinB2 signaling.

Baek Jong Min JM   Cheon Yoon-Hee YH   Kwak Sung Chul SC   Jun Hong Young HY   Yoon Kwon-Ha KH   Lee Myeung Su MS   Kim Ju-Young JY  

Experimental & molecular medicine 20180427 4


Claudins (Cldns) are well-established components of tight junctions (TJs) that play a pivotal role in the modulation of paracellular permeability. Several studies have explored the physiologic aspects of Cldn family members in bone metabolism. However, the effect of Cldn11, a major component of central nervous system myelin, on bone homeostasis has not been reported. In this study, we demonstrate that Cldn11 is a potential target for bone disease therapeutics as a dual modulator of osteogenesis  ...[more]

Similar Datasets

| S-EPMC5934775 | biostudies-literature
| S-EPMC5453702 | biostudies-literature
| S-EPMC5560593 | biostudies-literature
| S-EPMC5203910 | biostudies-literature
| S-EPMC7294355 | biostudies-literature
| S-EPMC11291065 | biostudies-literature
| S-EPMC6548606 | biostudies-literature
| S-EPMC10259661 | biostudies-literature
| S-EPMC2738568 | biostudies-literature
| S-EPMC2849749 | biostudies-literature