Ontology highlight
ABSTRACT: Objectives
Anemia is a known driver for hypoxia inducible factor (HIF) which leads to increased renal erythropoietin (EPO) synthesis. Bone marrow (BM) EPO receptor (EPOR) signals are transduced through a JAK2-STAT5 pathway. The origins of anemia of chronic kidney disease (CKD) are multifactorial, including impairment of both renal EPO synthesis as well as intestinal iron absorption. We investigated the HIF- EPO- EPOR axis in kidney, BM and proximal tibia in anemic juvenile CKD rats.Methods
CKD was induced by 5/6 nephrectomy in young (20 days old) male Sprague-Dawley rats while C group was sham operated. Rats were sacrificed 4 weeks after CKD induction and 5 minutes after a single bolus of IV recombinant human EPO. An additional control anemic (C-A) group was daily bled for 7 days.Results
Hemoglobin levels were similarly reduced in CKD and C-A (11.4 ± 0.3 and 10.8±0.2 Vs 13.5±0.3 g/dL in C, p<0.0001). Liver hepcidin mRNA was decreased in CA but increased in CKD. Serum iron was unchanged while transferrin levels were mildly decreased in CKD. Kidney HIF2? protein was elevated in C-A but unchanged in CKD. Kidney EPO protein and mRNA levels were unchanged between groups. However, BM EPO protein (which reflects circulating EPO) was increased in C-A but remained unchanged in CKD. BM and proximal tibia EPOR were unchanged in C-A but decreased in CKD. Proximal tibial phospho-STAT5 increased after the EPO bolus in C but not in CKD.Conclusions
Compared to blood loss, anemia in young CKD rats is associated with inappropriate responses in the HIF-EPO-EPO-R axis: kidney HIF2? and renal EPO are not increased, BM and bone EPOR levels, as well as bone pSTAT5 response to EPO are reduced. Thus, anemia of CKD may be treated with additional therapeutic avenues beyond iron and EPO supplementation.
SUBMITTER: Landau D
PROVIDER: S-EPMC5940200 | biostudies-literature | 2018
REPOSITORIES: biostudies-literature
PloS one 20180508 5
<h4>Objectives</h4>Anemia is a known driver for hypoxia inducible factor (HIF) which leads to increased renal erythropoietin (EPO) synthesis. Bone marrow (BM) EPO receptor (EPOR) signals are transduced through a JAK2-STAT5 pathway. The origins of anemia of chronic kidney disease (CKD) are multifactorial, including impairment of both renal EPO synthesis as well as intestinal iron absorption. We investigated the HIF- EPO- EPOR axis in kidney, BM and proximal tibia in anemic juvenile CKD rats.<h4>M ...[more]