Unknown

Dataset Information

0

Metabolomics insights into early type 2 diabetes pathogenesis and detection in individuals with normal fasting glucose.


ABSTRACT: AIMS/HYPOTHESIS:Identifying the metabolite profile of individuals with normal fasting glucose (NFG [<5.55 mmol/l]) who progressed to type 2 diabetes may give novel insights into early type 2 diabetes disease interception and detection. METHODS:We conducted a population-based prospective study among 1150 Framingham Heart Study Offspring cohort participants, age 40-65 years, with NFG. Plasma metabolites were profiled by LC-MS/MS. Penalised regression models were used to select measured metabolites for type 2 diabetes incidence classification (training dataset) and to internally validate the discriminatory capability of selected metabolites beyond conventional type 2 diabetes risk factors (testing dataset). RESULTS:Over a follow-up period of 20 years, 95 individuals with NFG developed type 2 diabetes. Nineteen metabolites were selected repeatedly in the training dataset for type 2 diabetes incidence classification and were found to improve type 2 diabetes risk prediction beyond conventional type 2 diabetes risk factors (AUC was 0.81 for risk factors vs 0.90 for risk factors + metabolites, p?=?1.1?×?10-4). Using pathway enrichment analysis, the nitrogen metabolism pathway, which includes three prioritised metabolites (glycine, taurine and phenylalanine), was significantly enriched for association with type 2 diabetes risk at the false discovery rate of 5% (p?=?0.047). In adjusted Cox proportional hazard models, the type 2 diabetes risk per 1 SD increase in glycine, taurine and phenylalanine was 0.65 (95% CI 0.54, 0.78), 0.73 (95% CI 0.59, 0.9) and 1.35 (95% CI 1.11, 1.65), respectively. Mendelian randomisation demonstrated a similar relationship for type 2 diabetes risk per 1 SD genetically increased glycine (OR 0.89 [95% CI 0.8, 0.99]) and phenylalanine (OR 1.6 [95% CI 1.08, 2.4]). CONCLUSIONS/INTERPRETATION:In individuals with NFG, information from a discrete set of 19 metabolites improved prediction of type 2 diabetes beyond conventional risk factors. In addition, the nitrogen metabolism pathway and its components emerged as a potential effector of earliest stages of type 2 diabetes pathophysiology.

SUBMITTER: Merino J 

PROVIDER: S-EPMC5940516 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Metabolomics insights into early type 2 diabetes pathogenesis and detection in individuals with normal fasting glucose.

Merino Jordi J   Leong Aaron A   Liu Ching-Ti CT   Porneala Bianca B   Walford Geoffrey A GA   von Grotthuss Marcin M   Wang Thomas J TJ   Flannick Jason J   Dupuis Josée J   Levy Daniel D   Gerszten Robert E RE   Florez Jose C JC   Meigs James B JB  

Diabetologia 20180406 6


<h4>Aims/hypothesis</h4>Identifying the metabolite profile of individuals with normal fasting glucose (NFG [<5.55 mmol/l]) who progressed to type 2 diabetes may give novel insights into early type 2 diabetes disease interception and detection.<h4>Methods</h4>We conducted a population-based prospective study among 1150 Framingham Heart Study Offspring cohort participants, age 40-65 years, with NFG. Plasma metabolites were profiled by LC-MS/MS. Penalised regression models were used to select measu  ...[more]

Similar Datasets

| S-EPMC3114342 | biostudies-literature
| S-EPMC3837024 | biostudies-literature
| S-EPMC10483877 | biostudies-literature
| S-EPMC5664285 | biostudies-literature
| S-EPMC2976690 | biostudies-literature
| S-EPMC5727148 | biostudies-literature
| S-EPMC2892065 | biostudies-literature
| S-EPMC7656954 | biostudies-literature
| S-EPMC5598349 | biostudies-literature
| S-EPMC3402273 | biostudies-literature