Coastal Fishermen as Lifesavers While Sailing at High Speed: A Crossover Study.
Ontology highlight
ABSTRACT: Starting basic cardiopulmonary resuscitation (CPR) early improves survival. Fishermen are the first bystanders while at work. Our objective was to test in a simulated scenario the CPR quality performed by fishermen while at port and while navigating at different speeds.Twenty coastal fishermen were asked to perform 2 minutes of CPR (chest compressions and mouth-to-mouth ventilations) on a manikin, in three different scenarios: (A) at port on land, (B) on the boat floor sailing at 10 knots, and (C) sailing at 20 knots. Data was recorded using quality CPR software, adjusted to current CPR international guidelines.The quality of CPR (QCPR) was significantly higher at port (43% ± 10) than sailing at 10 knots (30% ± 15; p = 0.01) or at 20 knots (26% ± 12; p = 0.001). The percentage of ventilation that achieved some lung insufflation was also significantly higher when CPR was done at port (77% ± 14) than while sailing at 10 knots (59% ± 18) or 20 knots (57% ± 21) (p = 0.01).In the event of drowning or cardiac arrest on a small boat, fishermen should immediately start basic CPR and navigate at a relatively high speed to the nearest port if the sea conditions are safe.
<h4>Purpose</h4>Starting basic cardiopulmonary resuscitation (CPR) early improves survival. Fishermen are the first bystanders while at work. Our objective was to test in a simulated scenario the CPR quality performed by fishermen while at port and while navigating at different speeds.<h4>Methods</h4>Twenty coastal fishermen were asked to perform 2 minutes of CPR (chest compressions and mouth-to-mouth ventilations) on a manikin, in three different scenarios: (A) at port on land, (B) on the boat ...[more]
Project description:This data paper presents a reconstruction of historical ports and coastal routes in England and Wales during the age of the sailing ship, ending at the beginning of the twentieth century. The dataset was created by an amalgamation of twenty different sources, including geographical data, primary sources and secondary literature. Ports found in historical documents were listed by year of appearance and georeferenced. Ports that appear in multiple sources were listed only once. Coastal routes between ports were drawn based on navigation charts and bathymetry data, distinguishing five categories with different characteristics. Visibility from the coast was deduced from elevation rasters and lighthouse locations. Subsequently both ports and coastal routes were checked using topological rules to ensure the connectivity of the network. The data is provided in shapefile format with all the attributes and can be analysed using Geographical Information Systems (GIS) for different types of geographical and historical studies.
Project description:In this paper, we characterise tourists most likely to visit a coastal destination by high-speed rail (HSR). Our data came from a survey conducted among HSR passengers during 2014's high season (July and August) at Spain's Camp de Tarragona and Alicante Stations, each of which is near a mass tourism destination on the Mediterranean coast: the Costa Daurada and the Costa Blanca, respectively. We used responses to the survey, which presented binary discrete-choice situations, to construct a database necessary for a logistic regression model that allowed us to examine how passenger profile, trip characteristics, and stay conditions influenced the use of HSR services on visits to each coastal destination. Results highlighted significant differences in the profiles of tourists who arrived at each destination by HSR and, in turn, that no specific tourist profile is associated with HSR, even for two stations that serve sunny beach destinations. Among its implications, to analyse travellers that HSR can attract, it is vital to consider the specific characteristics of each destination and its current market.
Project description:Quantum mechanics sets fundamental limits on how fast quantum states can be transformed in time. Two well-known quantum speed limits are the Mandelstam-Tamm and the Margolus-Levitin bounds, which relate the maximum speed of evolution to the system’s energy uncertainty and mean energy, respectively. Here, we test concurrently both limits in a multilevel system by following the motion of a single atom in an optical trap using fast matter wave interferometry. We find two different regimes: one where the Mandelstam-Tamm limit constrains the evolution at all times, and a second where a crossover to the Margolus-Levitin limit occurs at longer times. We take a geometric approach to quantify the deviation from the speed limit, measuring how much the quantum evolution deviates from the geodesic path in the Hilbert space of the multilevel system. Our results are important to understand the ultimate performance of quantum computing devices and related advanced quantum technologies.
Project description:Although Viking sailors did not have a magnetic compass, they could successfully navigate with a sun-compass under a sunny sky. Under cloudy/foggy conditions, they might have applied the sky-polarimetric Viking navigation (SPVN), the high success of which has been demonstrated with computer simulations using the following input data: sky polarization patterns measured with full-sky imaging polarimetry, and error functions of the navigation steps measured in psychophysical laboratory and planetarium experiments. As a continuation of the earlier studies, in this work we investigate the sensitivity of the success of SPVN to the following relevant sailing, meteorological and navigational parameters: sunstone type, sailing date, navigation periodicity, night sailing, dominance of strongly, medium or weakly cloudy skies, and changeability of cloudiness. Randomly varying these parameters in the simulation of Viking voyages along the latitude 60° 21' 55'' N from Norway to Greenland, we determined those parameters which had strong and weak influences on the success of SPVN. The following intrinsic parameters of the simulation were also randomly changed: sailing speed, visibility distance of Greenland's southeast coastline and start time of diurnal sailing. Our results show that the sailing success is sensitive to the night sailing, navigation periodicity and sailing date, while it is robust against the sunstone type, dominance of strongly, medium or weakly cloudy skies, and changing cloudiness.
Project description:Fast and selective isolation of single cells with unique spatial and morphological traits remains a technical challenge. We address this by establishing high speed image-enabled cell sorting (ICS), which records multicolor fluorescence images, and sorts cells based on measurements from image data at speeds up to 15,000 events per second. We combine ICS with CRISPR-pooled screens to identify novel regulators of the NF-κB pathway, enabling the completion of genome-wide image- based screens in around nine hours of run-time.
Project description:Despite the relationship between performance and anthropometric characteristics, strength, and endurance in the action of dinghy hiking, there is no equation to predict the position obtained in competition. The purpose of this study was to examine the effects of anthropometric characteristics, strength, and endurance on the performance of the sailor. Twenty-nine male sailors of the Laser class were evaluated according to age, navigation experience, strength and resistance tests in a simulator, body weight, size, sitting height, Body Mass Index (BMI), body fat percentage, trochanteric length, thigh length, tibial length, foot length, abdominal perimeter, and upper thigh perimeter. The results show that the variables were related to performance are age, navigation experience, height, and length of the thigh. The variables that are most related to performance are age and sailing experience. Seventy-six percent of the performance can be estimated using the following equation: 311.971 + (-1.089 × height) + (-1946 × age) + (-1.537 × thigh length). Performance in the Laser class will be determined by the tactics (age and sailing experience) and the morphological characteristics of the sailor (height and sitting height).
Project description:Backspatter is biological material that is ejected from the entry wound against the line of fire. This phenomenon was also observed in wound ballistic simulations using so called "reference cubes" (12 cm edge length, 10% gelatin, 4 °C, paint pad beneath the cover). High-speed video records from 102 experimental shots to these target models using full metal jacketed bullets in the calibers .32 auto, .38 special, 9 mm Luger and .357 Magnum were analyzed for chronology, morphological appearance and velocity of fluid ejection. Generally, a short tail splashing of surface material occurred when the bullet was penetrating the target. In 51 shots from distance (≥ 5 cm), regardless of caliber and shot range, a linear jet of fluid started in connection with the first collapse of the temporary cavity. The initial velocity of the jet was measured between 6 and 45 m/s. The jet was streaming on for about 60 to 100 ms with a stochastic deviation of ± 13° to the horizontal. Close range and contact shots showed earlier and faster (up to 330 m/s) backspatter depending on the cartridge and the gap between muzzle and target. Gaseous aerosol-like spray and cone-like spatter indicated an increasing influence of muzzle gases with decreasing shot range. Even under standardized experimental conditions, variations of backspatter were observed in near/contact shots.