A redox-active diborane platform performs C(sp3)-H activation and nucleophilic substitution reactions.
Ontology highlight
ABSTRACT: Organoboranes are among the most versatile and widely used reagents in synthetic chemistry. A significant further expansion of their application spectrum would be achievable if boron-containing reactive intermediates capable of inserting into C-H bonds or performing nucleophilic substitution reactions were readily available. However, current progress in the field is still hampered by a lack of universal design concepts and mechanistic understanding. Herein we report that the doubly arylene-bridged diborane(6) 1H2 and its B 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 B-bonded formal deprotonation product Li2[1] can activate the particularly inert C(sp3)-H bonds of added H3CLi and H3CCl, respectively. The first case involves the attack of [H3C]- on a Lewis-acidic boron center, whereas the second case follows a polarity-inverted pathway with nucleophilic attack of the B 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 B double bond on H3CCl. Mechanistic details were elucidated by means of deuterium-labeled reagents, a radical clock, ?,?-dihaloalkane substrates, the experimental identification of key intermediates, and quantum-chemical calculations. It turned out that both systems, H3CLi/1H2 and H3CCl/Li2[1], ultimately funnel into the same reaction pathway, which likely proceeds past a borylene-type intermediate and requires the cooperative interaction of both boron atoms.
SUBMITTER: Kaese T
PROVIDER: S-EPMC5942040 | biostudies-literature | 2018 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA