Unknown

Dataset Information

0

Segregation mediated heterogeneous structure in a metastable β titanium alloy with a superior combination of strength and ductility.


ABSTRACT: In β titanium alloys, the β stabilizers segregate easily and considerable effort has been devoted to alleviate/eliminate the segregation. In this work, instead of addressing the segregation problems, the segregation was utilized to develop a novel microstructure consisting of a nanometre-grained duplex (α+β) structure and micrometre scale β phase with superior mechanical properties. An as-cast Ti-9Mo-6W alloy exhibited segregation of Mo and W at the tens of micrometre scale. This was subjected to cold rolling and flash annealing at 820 oC for 2 and 5 mins. The solidification segregation of Mo and W leads to a locally different microstructure after cold rolling (i.e., nanostructured β phase in the regions rich in Mo and W and plate-like martensite and β phase in regions relatively poor in Mo and W), which play a decisive role in the formation of the heterogeneous microstructure. Tensile tests showed that this alloy exhibited a superior combination of high yield strength (692 MPa), high tensile strength (1115 MPa), high work hardening rate and large uniform elongation (33.5%). More importantly, the new technique proposed in this work could be potentially applicable to other alloy systems with segregation problems.

SUBMITTER: Gao J 

PROVIDER: S-EPMC5951864 | biostudies-literature | 2018 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Segregation mediated heterogeneous structure in a metastable β titanium alloy with a superior combination of strength and ductility.

Gao Junheng J   Nutter John J   Liu Xingguang X   Guan Dikai D   Huang Yuhe Y   Dye David D   Rainforth W Mark WM  

Scientific reports 20180514 1


In β titanium alloys, the β stabilizers segregate easily and considerable effort has been devoted to alleviate/eliminate the segregation. In this work, instead of addressing the segregation problems, the segregation was utilized to develop a novel microstructure consisting of a nanometre-grained duplex (α+β) structure and micrometre scale β phase with superior mechanical properties. An as-cast Ti-9Mo-6W alloy exhibited segregation of Mo and W at the tens of micrometre scale. This was subjected t  ...[more]

Similar Datasets

| S-EPMC4592961 | biostudies-literature
| S-EPMC5472627 | biostudies-literature
| S-EPMC6048477 | biostudies-literature
| S-EPMC7220923 | biostudies-literature
| S-EPMC5321736 | biostudies-literature
| S-EPMC11012458 | biostudies-literature
| S-EPMC5794777 | biostudies-literature
| S-EPMC5575320 | biostudies-literature
| S-EPMC10011607 | biostudies-literature
| S-EPMC5482718 | biostudies-literature