Thyroid dysfunctions secondary to cancer immunotherapy.
Ontology highlight
ABSTRACT: Immunotherapy is a firmly established pillar in the treatment of cancer, alongside the traditional approaches of surgery, radiotherapy, and chemotherapy. Like every treatment, also cancer immunotherapy causes a diverse spectrum of side effects, collectively referred to as immune-related adverse events.This review will examine the main forms of immunotherapy, the proposed mechanism(s) of action, and the incidence of thyroid dysfunctions.A comprehensive MEDLINE search was performed for articles published up to March 30, 2017.Following the pioneering efforts with administration of cytokines such as IL-2 and IFN-g, which caused a broad spectrum of thyroid dysfunctions (ranging in incidence from 1 to 50%), current cancer immunotherapy strategies comprise immune checkpoint inhibitors, oncolytic viruses, adoptive T-cell transfer, and cancer vaccines. Oncolytic viruses, adoptive T-cell transfer, and cancer vaccines cause thyroid dysfunctions only rarely. In contrast, immune checkpoint blockers (such as anti-CTLA-4, anti-PD-1, anti-PD-L1) are associated with a high risk of thyroid autoimmunity. This risk is highest for anti-PD-1 and increases further when a combination of checkpoint inhibitors is used.Cancer patients treated with monoclonal antibodies that block immune checkpoint inhibitors are at risk of developing thyroid dysfunctions. Their thyroid status should be assessed at baseline and periodically after initiation of the immunotherapy.
Journal of endocrinological investigation 20171213 6
<h4>Background</h4>Immunotherapy is a firmly established pillar in the treatment of cancer, alongside the traditional approaches of surgery, radiotherapy, and chemotherapy. Like every treatment, also cancer immunotherapy causes a diverse spectrum of side effects, collectively referred to as immune-related adverse events.<h4>Objective</h4>This review will examine the main forms of immunotherapy, the proposed mechanism(s) of action, and the incidence of thyroid dysfunctions.<h4>Methods</h4>A compr ...[more]
Project description:Anaplastic thyroid cancer (ATC) is one of the worst human malignancies, with an associated median survival of only 5 months. It is resistant to conventional thyroid cancer therapies, including radioiodine and thyroid-stimulating hormone suppression. Cancer immunotherapy has emerged over the past few decades as a transformative approach to treating a wide variety of cancers. However, immunotherapy for ATC is still in the experimental stage. This review will cover several strategies of immunotherapy and discuss the possible application of these strategies in the treatment of ATC (such as targeted therapy for tumor-associated macrophages, cancer vaccines, adoptive immunotherapy, monoclonal antibodies and immune checkpoint blockade) with the hope of improving the prognosis of ATC in the future.
Project description:Thyroid hormones (THs) exert pleiotropic effects in different mammalian organs, including gonads. Genetic and non-genetic factors, such as ageing and environmental stressors (e.g., low-iodine intake, exposure to endocrine disruptors, etc.), can alter T4/T3 synthesis by the thyroid. In any case, peripheral T3, controlled by tissue-specific enzymes (deiodinases), receptors and transporters, ensures organ homeostasis. Conflicting reports suggest that both hypothyroidism and hyperthyroidism, assessed by mean of circulating T4, T3 and Thyroid-Stimulating Hormone (TSH), could affect the functionality of the ovarian reserve determining infertility. The relationship between ovarian T3 level and functional ovarian reserve (FOR) is poorly understood despite that the modifications of local T3 metabolism and signalling have been associated with dysfunctions of several organs. Here, we will summarize the current knowledge on the role of TH signalling and its crosstalk with other pathways in controlling the physiological and premature ovarian ageing and, finally, in preserving FOR. We will consider separately the reports describing the effects of circulating and local THs on the ovarian health to elucidate their role in ovarian dysfunctions.
Project description:Medullary thyroid cancer (MTC) is a rare malignancy that arises from calcitonin-producing C-cells. Curative treatment for patients with metastatic MTC is challenging. Identifying the mechanisms by which cancer cells inhibit the activity of immune cells provides an opportunity to develop new therapies that restore anticancer activity. Little is known about the immunological phenomena underlying MTC. Here, we examined the expression profile of 395 genes associated with MTC. The study included 51 patients diagnosed with MTC at a single center. Bioinformatical analysis revealed that CD276 expression in MTC cells was at least three-fold higher than that in normal tissue. The expression of CD276 showed a weak but statistically significant positive correlation with tumor diameter, but we did not find a significant association between CD276 expression and other histopathological clinical factors, or the response to initial therapy. A search of published data identified the monoclonal antibody (inhibitor) enoblituzumab as a potential drug for patients diagnosed with MTC overexpressing CD276.
Project description:BackgroundFollowing radioiodine (131I) therapy of differentiated thyroid cancer, the salivary glands may become inflamed, leading to dysfunctions and decreases in patients' nutritional status and quality of life. The incidence of these dysfunctions after 131I-therapy is poorly known, and no clinical or genetic factors have been identified to date to define at-risk patients, which would allow the delivered activity to be adapted to the expected risk of salivary dysfunctions.ObjectiveThe aims of this study are to estimate the incidence of salivary dysfunctions, and consequences on the quality of life and nutritional status for patients after 131I-therapy; to characterize at-risk patients of developing posttreatment dysfunctions using clinical, biomolecular, and biochemical factors; and to validate a dosimetric method to calculate the dose received at the salivary gland level for analyzing the dose-response relationship between absorbed doses to salivary glands and salivary dysfunctions.MethodsThis prospective study aims to include patients for whom 131I-therapy is indicated as part of the treatment for differentiated thyroid cancer in a Paris hospital (40 and 80 patients in the 1.1 GBq and 3.7 GBq groups, respectively). The follow-up is based on three scheduled visits: at inclusion (T0, immediately before 131I-therapy), and at 6 months (T6) and 18 months (T18) posttreatment. For each visit, questionnaires on salivary dysfunctions (validated French tool), quality of life (Hospital Anxiety and Depression scale, Medical Outcomes Study 36-Item Short Form Survey), and nutritional status (visual analog scale) are administered by a trained clinical research associate. At T0 and T6, saliva samples and individual measurements of the salivary flow, without and with salivary glands stimulation, are performed. External thermoluminescent dosimeters are positioned on the skin opposite the salivary glands and at the sternal fork immediately before 131I administration and removed after 5 days. From the doses recorded by the dosimeters, an estimation of the dose received at the salivary glands will be carried out using physical and computational phantoms. Genetic and epigenetic analyses will be performed to search for potential biomarkers of the predisposition to develop salivary dysfunctions after 131I-therapy.ResultsA total of 139 patients (99 women, 71.2%; mean age 47.4, SD 14.3 years) were enrolled in the study between September 2020 and April 2021 (45 and 94 patients in the 1.1 GBq and 3.7G Bq groups, respectively). T6 follow-up is complete and T18 follow-up is currently underway. Statistical analyses will assess the links between salivary dysfunctions and absorbed doses to the salivary glands, accounting for associated factors. Moreover, impacts on the patients' quality of life will be analyzed.ConclusionsTo our knowledge, this study is the first to investigate the risk of salivary dysfunctions (using both objective and subjective indicators) in relation to organ (salivary glands) doses, based on individual dosimeter records and dose reconstructions. The results will allow the identification of patients at risk of salivary dysfunctions and will permit clinicians to propose a more adapted follow-up and/or countermeasures to adverse effects.Trial registrationClinicalTrials.gov NCT04876287; https://clinicaltrials.gov/ct2/show/NCT04876287.International registered report identifier (irrid)DERR1-10.2196/35565.
Project description:Up to 20% of patients treated with anti-PD-1/PD-L1 inhibitors suffered from thyroid dysfunctions, yet the mediators associated with their occurrence remain unclear. The increasing coincidence of papillary thyroid carcinoma (PTC) with Hashimoto thyroiditis (HT) and the high vulnerability of thyroid to immunotherapy motivated us to discover the similarities and their underlying transcriptomic basis. Clinical characteristics analysis of 468 PTC patients from two independent cohorts and meta-analysis of 22,155 PTC patients unveiled a strong negative association between HT and recurrence in PTC patients. Transcriptome analysis of both cohorts showed PTC patients with HT were enriched in macrophages, CD8+ and CD4+ cytotoxic T cells, which was further validated by single-cell transcriptome analysis of 17,438 cells from PTC patients, and CD8+ T cells were correlated with disease-free survival of PTC patients. In both cohorts and single-cell dataset, elevated expression of PD-1-related genes was observed in the HT group, and CD3D appeared to be a target for enhancing the activation of CD8+ T cells. Correlation analysis of 3,318 thyroid adverse events from 39,123 patients across 24 tumor types and molecular signatures demonstrated similar signatures associated with autoimmune thyroiditis in PTC and thyroid immune-related adverse events (irAEs), and several multi-omics signatures, including signatures of CD8A and CD8+ T cells, showed positive associations with the odds ratio of thyroid irAEs. Our results unveil shared molecular signatures underlying thyroid dysfunction between patients receiving immunotherapies and PTC patients suffering from HT, which may shed light on managing the adverse events during cancer immunotherapy.
Project description:Immune-related adverse events (irAEs) are often seen during immune-checkpoint inhibitor (ICI) treatment of various malignancies. Endocrine irAEs including thyroid dysfunctions are the most common irAEs, but their biomarkers remain unclear. In order to identify individuals who are susceptible to thyroid irAE for earlier diagnosis and appropriate follow-up, the current study is aimed to investigate biomarkers of thyroid irAE. Herein, patients with advanced malignant diseases who received ICIs treatment were prospectively studied. Clinical and laboratory examination, thyroid function, and autoantibodies were evaluated at baseline, and every 4 wk after first treatment with ICIs. Cytokines/chemokines were measured at baseline and at 4 wk. In vivo effects of ICIs on experimental autoimmune thyroiditis were evaluated. Twenty-six patients with malignant diseases who received ICIs treatment were enrolled in the study. Patients were divided into two groups: those who developed thyroid irAE, and those without irAEs. Comparing the two groups, early increase (?4 wk) in serum thyroglobulin (Tg) levels and thyroid autoantibodies was seen in thyroid irAE (P < .05). Notably, higher levels of serum IL-1?, IL-2, and GM-CSF at baseline, and early decrease of IL-8, G-CSF, and MCP-1 were significantly associated in the development of thyroid irAE (P < .05). In vivo effects of anti-PD-1 antibody on deterioration of mice experimental thyroiditis were seen. In conclusion, early change in Tg, thyroid autoimmunity, and cytokine levels might indicate development of thyroid irAE. Pre-existing thyroid autoimmunity might be involved with the development of thyroid irAE. Potential application of these factors as surrogate biomarkers for tumor therapy was indicated.
Project description:Within the endocrine system, thyroid cancer (THCA) is the most typical malignant tumor. Tumor-infiltrating immune cells play vital roles in tumor progression, recurrence, metastasis as well as response to immunotherapy. However, THCA's immune infiltrative landscape is still not clarified. Therefore, we utilized two statistical algorithms to investigate the immune cell infiltration (ICI) landscape of 505 THCA samples and defined three ICI immune subtypes. The ICI scores were calculated using principal-component analysis. Increased tumor mutation burden (TMB) and immune-related signaling pathways were associated to a high ICI score. The high ICI score group indicated a relatively longer overall survival (OS) than the low ICI score group. Most immune checkpoint-related and immune activation-related genes were considerably upregulated in the ICI high group, which indicates stronger immunogenicity and a greater likelihood of benefiting from immunotherapy. In two cohort studies of patients receiving immunotherapy, high-ICI-score group showed notable therapeutic effects and clinical advantages compared to those with lower ICI scores. These results demonstrate that ICI score acts as an effective prognostic indicator and predictor of response to immunotherapy.
Project description:Thyroid hormones (TH) are essential for the development of the human brain, growth and cellular metabolism. Investigation of TH transporters became one of the emerging fields in thyroid research after the discovery of inactivating mutations in the Monocarboxylate transporter 8 (MCT8), which was found to be highly specific for TH transport. However, additional transmembrane transporters are also very important for TH uptake and efflux in different cell types. They transport TH as secondary substrates and include the aromatic amino acid transporting MCT10, the organic anion transporting polypeptides (e.g. OATP1C1, OATP1A2, OPTP1A4) and the large neutral amino acid transporters (LAT1 and LAT2). These TH transporters characteristically possess 12 transmembrane spanners but due to the strong differing sequences between the three transporter families we assume an identical conformation is not very likely. In contrast to the others, the LAT family members form a heterodimer with the escort protein 4F2hc/CD98. A comparison of sequence proportions, locations and types of functional sensitive features for TH transport discovered by mutations, revealed that transport sensitive charged residues occur as conserved amino acids only within each family of the transporter types but not in all putative TH transporters. Based on the lack of highly conserved sensitive charged residues throughout the three transporter families as a common counterpart for the amino acid moiety of the substrates, we conclude that the molecular transport mechanism is likely organized either a) by different molecular determinants in the divergent transporter types or b) the counterparts for the substrates` amino acid moiety at the transporter are not any charged side chains but other proton acceptors or donators. However, positions of transport sensitive residues coincide at transmembrane helix 8 in the TH transporter MCT8, OATP1C1 and another amino acid transporter, the L-cystine and L-glutamate exchanger xCT, which is highly homologous to LAT1 and LAT2. Here we review the data available and compare similarities and differences between these primary and secondary TH transporters regarding sequences, topology, potential structures, trafficking to the plasma membrane, molecular features and locations of transport sensitive functionalities. Thereby, we focus on TH transporters occurring in the blood-brain barrier.
Project description:BackgroundThyroid cancer is a leading endocrine malignancy, with anaplastic and medullary subtypes posing treatment challenges. Existing therapies have limited efficacy, highlighting a need for innovative approaches.MethodsWe analyzed 658 articles and 87 eligible clinical trials using bibliometric tools and database searches, including annual publication and citation trends, were executed using Web of Science, CiteSpace, and VOS Viewer.ResultsPost-2018, there is a surge in thyroid cancer immunotherapy research, primarily from China and the University of Pisa. Of the 87 trials, 32 were Phase I and 55 were Phase II, mostly exploring combination therapies involving immune checkpoint inhibitors.ConclusionThe study's dual approach verifies the swift advancement of thyroid cancer immunotherapy from diverse perspectives. Immune checkpoint inhibitors have become the preferred regimen for advanced MTC and ATC in late therapeutic lines. However, since ICB plays a pivotal role in ATC, current clinical trial data show that ATC patients account for more and the curative effect is more accurate. Anticipated future developments are inclined toward combination regimens integrating immunotherapy with chemotherapy or targeted therapies. Emerging approaches, such as bispecific antibodies, cytokine-based therapies, and adoptive cell therapies like CAR-T and TCR-T, are exhibiting considerable potential. Upcoming research is expected to concentrate on refining the tumor immune milieu and discovering novel biomarkers germane to immunotherapeutic interventions.
Project description:Immune checkpoint inhibitors (PD-1/PD-L1 and CTLA-4 blockade) have revolutionized the treatment landscape in non-small cell lung cancer (NSCLC). Secondary resistance to immunotherapy (IO), which poses a substantial challenge in clinical settings, occurs in several initial responders. Currently, new treatment approaches have been extensively evaluated in investigational studies for these patients to tackle this difficult problem; however, the lack of consistency in clinical definition, uniform criteria for enrollment in clinical trials, and interpretation of results remain significant hurdles to progress. Thus, our expert panel comprehensively synthesized data from current studies to propose a practical clinical definition of secondary resistance to immunotherapy in NSCLC in metastatic and neoadjuvant settings. In addition to patients who received IO alone (including IO-IO combinations), we also generated a definition for patients treated with chemotherapy plus IO. This consensus aimed to provide guidance for clinical trial design and facilitate future discussions with investigators. It should be noted that additional updates in this consensus are required when new data is available.