Unknown

Dataset Information

0

Molecular species forming at the ?-Fe2O3 nanoparticle-aqueous solution interface.


ABSTRACT: We report on electronic structure measurements of the interface between hematite nanoparticles (6 nm diameter) and aqueous solutions. Using soft X-ray photoelectron spectroscopy from a liquid microjet we detect valence and core-level photoelectrons as well as Auger electrons from liquid water, from the nanoparticle-water interface, and from the interior of the aqueous-phase nanoparticles. Most noteworthy, the method is shown to be sufficiently sensitive for the detection of adsorbed hydroxyl species, resulting from H2O dissociation at the nanoparticle surface in aqueous solution. We obtain signal from surface OH from resonant, non-resonant, and from so-called partial-electron-yield X-ray absorption (PEY-XA) spectra. In addition, we report resonant photoelectron measurements at the iron 2p excitation. The respective Fe iron 2p3/2 edge (L3-edge) PEY-XA spectra exhibit two main absorption peaks with their energies being sensitive to the chemical environment of the Fe3+ ions at the nanoparticle-solution interface. This manifests in the 10Dq value which is a measure of the ligand-field strength. Furthermore, an observed intensity variation of the pre-peak, when comparing the PEY-XA spectra for different iron Auger-decay channels, can be assigned to different extents of electron delocalization. From the experimental fraction of local versus non-local autoionization signals we then find a very fast, approximately 1 fs, charge transfer time from interfacial Fe3+ into the environment. The present study, which is complementary to ambient-pressure photoemission studies on solid-electrolyte systems, also highlights the multiple aspects of photoemission that need to be explored for a full characterization of the transition-metal-oxide nanoparticle surface in aqueous phase.

SUBMITTER: Ali H 

PROVIDER: S-EPMC5961451 | biostudies-literature | 2018 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Molecular species forming at the α-Fe<sub>2</sub>O<sub>3</sub> nanoparticle-aqueous solution interface.

Ali Hebatallah H   Seidel Robert R   Pohl Marvin N MN   Winter Bernd B  

Chemical science 20180420 19


We report on electronic structure measurements of the interface between hematite nanoparticles (6 nm diameter) and aqueous solutions. Using soft X-ray photoelectron spectroscopy from a liquid microjet we detect valence and core-level photoelectrons as well as Auger electrons from liquid water, from the nanoparticle-water interface, and from the interior of the aqueous-phase nanoparticles. Most noteworthy, the method is shown to be sufficiently sensitive for the detection of adsorbed hydroxyl spe  ...[more]

Similar Datasets

| S-EPMC10324314 | biostudies-literature
| S-EPMC5936939 | biostudies-literature
| S-EPMC4806361 | biostudies-literature
| S-EPMC9653668 | biostudies-literature
| S-EPMC5615067 | biostudies-literature
| S-EPMC5087032 | biostudies-literature
| S-EPMC5559733 | biostudies-literature
| S-EPMC4291617 | biostudies-other
| S-EPMC3189405 | biostudies-literature
| S-EPMC9059947 | biostudies-literature