Imaging Ca2+ with a Fluorescent Rhodol.
Ontology highlight
ABSTRACT: Ca2+ mediates a host of biochemical and biophysical signaling processes in cells. The development of synthetic, Ca2+-sensitive fluorophores has played an instrumental role in our understanding of the temporal and spatial dynamics of Ca2+. Coupling Ca2+-selective ligands to fluorescent reporters has provided a wealth of excellent indicators that span the visible excitation and emission spectrum and possess Ca2+ affinities suited to a variety of cellular contexts. One underdeveloped area is the use of hybrid rhodamine/fluorescein fluorophores, or rhodols, in the context of Ca2+ sensing. Rhodols are bright and photostable and have good two-photon absorption cross sections (?TPA), making them excellent candidates for incorporation into Ca2+-sensing scaffolds. Here, we present the design, synthesis, and application of rhodol Ca2+ sensor 1 (RCS-1), a chlorinated pyrrolidine-based rhodol. RCS-1 possesses a Ca2+ binding constant of 240 nM and a 10-fold turn response to Ca2+. RCS-1 effectively absorbs infrared light and has a ?TPA of 76 GM at 840 nm, 3-fold greater than that of its fluorescein-based counterpart. The acetoxy-methyl ester of RCS-1 stains the cytosol of live cells, enabling observation of Ca2+ fluctuations and cultured neurons using both one- and two-photon illumination. Together, these results demonstrate the utility of rhodol-based scaffolds for Ca2+ sensing using two-photon illumination in neurons.
SUBMITTER: Contractor AA
PROVIDER: S-EPMC5963927 | biostudies-literature | 2018 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA