Unknown

Dataset Information

0

Reactive Oxygen Species Localization Programs Inflammation to Clear Microbes of Different Size.


ABSTRACT: How the number of immune cells recruited to sites of infection is determined and adjusted to differences in the cellular stoichiometry between host and pathogen is unknown. Here, we have uncovered a role for reactive oxygen species (ROS) as sensors of microbe size. By sensing the differential localization of ROS generated in response to microbes of different size, neutrophils tuned their interleukin (IL)-1? expression via the selective oxidation of NF-?B, in order to implement distinct inflammatory programs. Small microbes triggered ROS intracellularly, suppressing IL-1? expression to limit neutrophil recruitment as each phagocyte eliminated numerous pathogens. In contrast, large microbes triggered ROS extracellularly, amplifying IL-1? expression to recruit numerous neutrophils forming cooperative clusters. Defects in ROS-mediated microbe size sensing resulted in large neutrophil infiltrates and clusters in response to small microbes that contribute to inflammatory disease. These findings highlight the impact of ROS localization on signal transduction.

SUBMITTER: Warnatsch A 

PROVIDER: S-EPMC5965455 | biostudies-literature | 2017 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Reactive Oxygen Species Localization Programs Inflammation to Clear Microbes of Different Size.

Warnatsch Annika A   Tsourouktsoglou Theodora-Dorita TD   Branzk Nora N   Wang Qian Q   Reincke Susanna S   Herbst Susanne S   Gutierrez Maximiliano M   Papayannopoulos Venizelos V  

Immunity 20170314 3


How the number of immune cells recruited to sites of infection is determined and adjusted to differences in the cellular stoichiometry between host and pathogen is unknown. Here, we have uncovered a role for reactive oxygen species (ROS) as sensors of microbe size. By sensing the differential localization of ROS generated in response to microbes of different size, neutrophils tuned their interleukin (IL)-1β expression via the selective oxidation of NF-κB, in order to implement distinct inflammat  ...[more]

Similar Datasets

| S-EPMC4343105 | biostudies-other
| S-EPMC3929010 | biostudies-literature
| S-SCDT-91707_2_1565029492_jats | biostudies-other
| S-EPMC6685105 | biostudies-literature
2019-10-15 | GSE108730 | GEO
| S-EPMC8378889 | biostudies-literature
2020-07-13 | GSE128156 | GEO
| S-EPMC5360524 | biostudies-literature
| S-EPMC10399794 | biostudies-literature
| S-EPMC2892288 | biostudies-literature