Unknown

Dataset Information

0

Dynamics of soil nitrogen fractions and their relationship with soil microbial communities in two forest species of northern China.


ABSTRACT: Microbially-mediated soil N mineralization and transformation are crucial to plant growth. However, changes in soil microbial groups and various N components are not clearly understood. To explore the relationship between soil N components and microbial communities, we conducted an in-situ experiment on two typically planted forest species, namely, Sibirica Apricot (SA) and Prunus davidiana Franch (PdF) by using closed-top polyvinyl chloride tubes. Changes in soil inorganic N, organic N (ON) fractions, and levels of microbial phospholipid fatty acids (PLFAs) were measured bimonthly from April 2012 to April 2013. Microbial PLFAs and the concentrations of easily-available microbial biomass N (MBN; ~60 mg kg-1), soluble ON (SON; ~20 mg kg-1), and inorganic N were similar between the two soils whereas the ON (~900 mg kg-1) and its major part total acid-hydrolyzable N (HTN; ~500 mg kg-1), were significantly different (p < 0.05) in most months (5/6 and 4/6; respectively). The canonical correlation analysis of soil N fractions and microbial parameters indicated that the relationship between total PLFAs (total biomass of living cells) and NH4+-N was the most representative. The relative contributions (indicated by the absolute value of canonical coefficient) of NH4+-N were the largest, followed by NO3--N and MBN. For the HTN component, the relative percentage of hydrolyzable amino acid N and ammonium N decreased markedly in the first half of the year. Canonical variation mainly reflected the relationship between ammonium N and bacterial PLFAs, which were the most sensitive indicators related to soil N changes. The relative contributions of HTN components to the link between soil microbial groups and HTN components were ammonium N > amino acid N > amino sugar N. Observations from our study indicate the sensitivity of soil N mineralization indicators in relation to the temporal variation of soil microbial groups and N fractions.

SUBMITTER: Liu D 

PROVIDER: S-EPMC5967799 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dynamics of soil nitrogen fractions and their relationship with soil microbial communities in two forest species of northern China.

Liu Dong D   Huang Yimei Y   Yan Hao H   Jiang Yueli Y   Zhao Tong T   An Shaoshan S  

PloS one 20180524 5


Microbially-mediated soil N mineralization and transformation are crucial to plant growth. However, changes in soil microbial groups and various N components are not clearly understood. To explore the relationship between soil N components and microbial communities, we conducted an in-situ experiment on two typically planted forest species, namely, Sibirica Apricot (SA) and Prunus davidiana Franch (PdF) by using closed-top polyvinyl chloride tubes. Changes in soil inorganic N, organic N (ON) fra  ...[more]

Similar Datasets

| S-EPMC4725858 | biostudies-other
| S-EPMC3625167 | biostudies-literature
| S-EPMC6052259 | biostudies-literature
| S-EPMC6743161 | biostudies-literature
| S-EPMC4917850 | biostudies-literature
| S-EPMC4327730 | biostudies-literature
| S-EPMC8174771 | biostudies-literature
| S-EPMC3329107 | biostudies-other
| S-EPMC7920768 | biostudies-literature
| S-EPMC3485702 | biostudies-literature