Unknown

Dataset Information

0

Downregulation of PARP1 transcription by CDK4/6 inhibitors sensitizes human lung cancer cells to anticancer drug-induced death by impairing OGG1-dependent base excision repair.


ABSTRACT: Hallmarks of cancer cells include uncontrolled growth and rapid proliferation; thus, cyclin-dependent kinases are a therapeutic target for cancer treatment. Treating non-small lung cancer cells with sublethal concentrations of the CDK4/6 inhibitors, ribociclib (LEE011) and palbociclib (PD0332991), which are approved by the FDA for anticancer therapies, caused cell cycle arrest in the G1 phase and suppression of poly(ADP-ribose) polymerase 1 (PARP1) transcription by inducing recruitment of the RB1-E2F1-HDAC1-EZH2 repressive complex to the PARP1 promoter. Downregulation of PARP1 made cancer cells vulnerable to death triggered by the anticancer drugs (WP631 and etoposide) and H2O2. All agents brought about redox imbalance and DNA strand breaks. The lack of PARP1 and poly(ADP-ribosyl)ation impaired the 8-oxoguanine glycosylase (OGG1)-dependent base excision DNA repair pathway, which is critical for maintaining the viability of cells treated with CDK4/6 inhibitors during oxidative stress. Upon G1 arrest of PARP1 overexpressing cells, OGG1 formed an immunoprecipitable complex with PARP1. Similar to cells with downregulated PARP1 expression, inhibition of PARP1 or OGG1 in PARP1 overexpressing cells resulted in DNA damage and decreased viability. Thus, PARP1 and OGG1 act in the same regulatory pathway, and PARP1 activity is required for OGG1-mediated repair of oxidative DNA damage in G1-arrested cells. In conclusion, the action of CDK4/6 inhibitors is not limited to the inhibition of cell growth. CDK4/6 inhibitors also lead to accumulation of DNA damage by repressing PARP1 in oxidatively stressed cells. Thus, CDK4/6 inhibitors sensitize G1-arrested cells to anticancer drugs, since these cells require PARP1-OGG1 functional interaction for cell survival.

SUBMITTER: Tempka D 

PROVIDER: S-EPMC5975074 | biostudies-literature | 2018 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Downregulation of PARP1 transcription by CDK4/6 inhibitors sensitizes human lung cancer cells to anticancer drug-induced death by impairing OGG1-dependent base excision repair.

Tempka Dominika D   Tokarz Paulina P   Chmielewska Kinga K   Kluska Magdalena M   Pietrzak Julita J   Rygielska Żaneta Ż   Virág László L   Robaszkiewicz Agnieszka A  

Redox biology 20171229


Hallmarks of cancer cells include uncontrolled growth and rapid proliferation; thus, cyclin-dependent kinases are a therapeutic target for cancer treatment. Treating non-small lung cancer cells with sublethal concentrations of the CDK4/6 inhibitors, ribociclib (LEE011) and palbociclib (PD0332991), which are approved by the FDA for anticancer therapies, caused cell cycle arrest in the G1 phase and suppression of poly(ADP-ribose) polymerase 1 (PARP1) transcription by inducing recruitment of the RB  ...[more]

Similar Datasets

| S-EPMC5967321 | biostudies-literature
| S-EPMC6154017 | biostudies-literature
| S-EPMC8294329 | biostudies-literature
| S-EPMC10042944 | biostudies-literature
| S-EPMC8683375 | biostudies-literature
| S-EPMC7318607 | biostudies-literature
2022-12-01 | GSE218871 | GEO
2015-02-02 | E-GEOD-61095 | biostudies-arrayexpress
| S-EPMC3683898 | biostudies-literature
| S-EPMC4417162 | biostudies-literature