Unknown

Dataset Information

0

A computational framework for complex disease stratification from multiple large-scale datasets.


ABSTRACT:

Background

Multilevel data integration is becoming a major area of research in systems biology. Within this area, multi-'omics datasets on complex diseases are becoming more readily available and there is a need to set standards and good practices for integrated analysis of biological, clinical and environmental data. We present a framework to plan and generate single and multi-'omics signatures of disease states.

Methods

The framework is divided into four major steps: dataset subsetting, feature filtering, 'omics-based clustering and biomarker identification.

Results

We illustrate the usefulness of this framework by identifying potential patient clusters based on integrated multi-'omics signatures in a publicly available ovarian cystadenocarcinoma dataset. The analysis generated a higher number of stable and clinically relevant clusters than previously reported, and enabled the generation of predictive models of patient outcomes.

Conclusions

This framework will help health researchers plan and perform multi-'omics big data analyses to generate hypotheses and make sense of their rich, diverse and ever growing datasets, to enable implementation of translational P4 medicine.

SUBMITTER: De Meulder B 

PROVIDER: S-EPMC5975674 | biostudies-literature | 2018 May

REPOSITORIES: biostudies-literature

altmetric image

Publications


<h4>Background</h4>Multilevel data integration is becoming a major area of research in systems biology. Within this area, multi-'omics datasets on complex diseases are becoming more readily available and there is a need to set standards and good practices for integrated analysis of biological, clinical and environmental data. We present a framework to plan and generate single and multi-'omics signatures of disease states.<h4>Methods</h4>The framework is divided into four major steps: dataset sub  ...[more]

Similar Datasets

| S-EPMC6917865 | biostudies-literature
| S-EPMC6931356 | biostudies-literature
| S-EPMC3098160 | biostudies-literature
| S-EPMC8693048 | biostudies-literature
| S-EPMC3522745 | biostudies-literature
| S-EPMC6993843 | biostudies-literature
2022-07-26 | E-MTAB-11932 | biostudies-arrayexpress
| S-EPMC4493645 | biostudies-literature
2021-05-24 | GSE162089 | GEO
| S-EPMC9202106 | biostudies-literature