Notch-effector CSL promotes squamous cell carcinoma by repressing histone demethylase KDM6B.
Ontology highlight
ABSTRACT: Notch 1/2 genes play tumor-suppressing functions in squamous cell carcinoma (SCC), a very common malignancy in skin and internal organs. In contrast with Notch, we show that the transcription factor CSL (also known as RBP-J?), a key effector of canonical Notch signaling endowed with intrinsic transcription-repressive functions, plays a tumor-promoting function in SCC development. Expression of this gene decreased in upper epidermal layers and human keratinocytes (HKCs) undergoing differentiation, while it increased in premalignant and malignant SCC lesions from skin, head/neck, and lung. Increased CSL levels enhanced the proliferative potential of HKCs and SCC cells, while silencing of CSL induced growth arrest and apoptosis. In vivo, SCC cells with increased CSL levels gave rise to rapidly expanding tumors, while cells with silenced CSL formed smaller and more differentiated tumors with enhanced inflammatory infiltrate. Global transcriptomic analysis of HKCs and SCC cells with silenced CSL revealed major modulation of apoptotic, cell-cycle, and proinflammatory genes. We also show that the histone demethylase KDM6B is a direct CSL-negative target, with inverse roles of CSL in HKC and SCC proliferative capacity, tumorigenesis, and tumor-associated inflammatory reaction. CSL/KDM6B protein expression could be used as a biomarker of SCC development and indicator of cancer treatment.
SUBMITTER: Al Labban D
PROVIDER: S-EPMC5983322 | biostudies-literature | 2018 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA