A mathematical model for fitting and predicting relaxation modulus and simulating viscoelastic responses.
Ontology highlight
ABSTRACT: We propose a mathematical model for relaxation modulus and its numerical solution. The model formula is extended from sigmoidal function considering nonlinear strain hardening. Its physical meaning can be interpreted by a macroscale elastic network-viscous medium model with only five model parameters in a simpler format than the molecular-chain-based polymer models to represent general solid materials. We also developed a finite-element (FE) framework and robust numerical algorithm to implement this model for simulating responses under both static and dynamic loadings. We validated the model through both experimental data and numerical simulations on a variety of materials including asphalt concrete, polymer, spider silk, hydrogel, agar and bone. By satisfying the second law of thermodynamics in the form of Calusius-Duhem inequality, the model is able to simulate creep and sinusoidal deformation as well as energy dissipation. Compared to the Prony series, the widely used model with a large number of model parameters, the proposed model has improved accuracy in fitting experimental data and prediction stability outside of the experimental range with competitive numerical stability and computation speed. We also present simulation results of nonlinear stress-strain relationships of spider silk and hydrogels, and dynamic responses of a multilayer structure.
SUBMITTER: Xu Q
PROVIDER: S-EPMC5990701 | biostudies-literature | 2018 May
REPOSITORIES: biostudies-literature
ACCESS DATA