Unknown

Dataset Information

0

Autophagy regulates exosomal release of prions in neuronal cells.


ABSTRACT: Prions are protein-based infectious agents that autocatalytically convert the cellular prion protein PrPC to its pathological isoform PrPSc Subsequent aggregation and accumulation of PrPSc in nervous tissues causes several invariably fatal neurodegenerative diseases in humans and animals. Prions can infect recipient cells when packaged into endosome-derived nanoparticles called exosomes, which are present in biological fluids such as blood, urine, and saliva. Autophagy is a basic cellular degradation and recycling machinery that also affects exosomal processing, but whether autophagy controls release of prions in exosomes is unclear. Our work investigated the effect of autophagy modulation on exosomal release of prions and how this interplay affects cellular prion infection. Exosomes isolated from cultured murine central neuronal cells (CAD5) and peripheral neuronal cells (N2a) contained prions as shown by immunoblotting for PrPSc, prion-conversion activity, and cell culture infection. We observed that autophagy stimulation with the mTOR inhibitor rapamycin strongly inhibited exosomal prion release. In contrast, inhibition of autophagy by wortmannin or CRISPR/Cas9-mediated knockout of the autophagy protein Atg5 (autophagy-related 5) greatly increased the release of exosomes and exosome-associated prions. We also show that a difference in exosomal prion release between CAD5 and N2a cells is related to differences at the level of basal autophagy. Taken together, our results indicate that autophagy modulation can control lateral transfer of prions by interfering with their exosomal release. We describe a novel role of autophagy in the prion life cycle, an understanding that may provide useful targets for containing prion diseases.

SUBMITTER: Abdulrahman BA 

PROVIDER: S-EPMC5995502 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Autophagy regulates exosomal release of prions in neuronal cells.

Abdulrahman Basant A BA   Abdelaziz Dalia H DH   Schatzl Hermann M HM  

The Journal of biological chemistry 20180426 23


Prions are protein-based infectious agents that autocatalytically convert the cellular prion protein PrP<sup>C</sup> to its pathological isoform PrP<sup>Sc</sup> Subsequent aggregation and accumulation of PrP<sup>Sc</sup> in nervous tissues causes several invariably fatal neurodegenerative diseases in humans and animals. Prions can infect recipient cells when packaged into endosome-derived nanoparticles called exosomes, which are present in biological fluids such as blood, urine, and saliva. Aut  ...[more]

Similar Datasets

| S-EPMC470735 | biostudies-literature
| S-EPMC4004974 | biostudies-literature
| S-EPMC7184756 | biostudies-literature
| S-EPMC2605182 | biostudies-other
| S-EPMC7146643 | biostudies-literature
| S-EPMC3259785 | biostudies-literature
| S-EPMC5103490 | biostudies-literature
| S-EPMC3563983 | biostudies-literature
| S-EPMC5962575 | biostudies-literature
| S-EPMC9945297 | biostudies-literature