Unknown

Dataset Information

0

Spatio-temporal relays control layer identity of direction-selective neuron subtypes in Drosophila.


ABSTRACT: Visual motion detection in sighted animals is essential to guide behavioral actions ensuring their survival. In Drosophila, motion direction is first detected by T4/T5 neurons. Their axons innervate one of the four lobula plate layers. How T4/T5 neurons with layer-specific representation of motion-direction preferences are specified during development is unknown. We show that diffusible Wingless (Wg) between adjacent neuroepithelia induces its own expression to form secondary signaling centers. These activate Decapentaplegic (Dpp) signaling in adjacent lateral tertiary neuroepithelial domains dedicated to producing layer 3/4-specific T4/T5 neurons. T4/T5 neurons derived from the core domain devoid of Dpp signaling adopt the default layer 1/2 fate. Dpp signaling induces the expression of the T-box transcription factor Optomotor-blind (Omb), serving as a relay to postmitotic neurons. Omb-mediated repression of Dachshund transforms layer 1/2- into layer 3/4-specific neurons. Hence, spatio-temporal relay mechanisms, bridging the distances between neuroepithelial domains and their postmitotic progeny, implement T4/T5 neuron-subtype identity.

SUBMITTER: Apitz H 

PROVIDER: S-EPMC5997761 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Spatio-temporal relays control layer identity of direction-selective neuron subtypes in Drosophila.

Apitz Holger H   Salecker Iris I  

Nature communications 20180612 1


Visual motion detection in sighted animals is essential to guide behavioral actions ensuring their survival. In Drosophila, motion direction is first detected by T4/T5 neurons. Their axons innervate one of the four lobula plate layers. How T4/T5 neurons with layer-specific representation of motion-direction preferences are specified during development is unknown. We show that diffusible Wingless (Wg) between adjacent neuroepithelia induces its own expression to form secondary signaling centers.  ...[more]

Similar Datasets

| S-EPMC7003801 | biostudies-literature
| S-EPMC6386519 | biostudies-literature
| S-EPMC7388218 | biostudies-literature
| S-EPMC3170297 | biostudies-literature
| S-EPMC1947980 | biostudies-literature
| S-EPMC3002985 | biostudies-literature
| S-EPMC4086723 | biostudies-literature
| S-EPMC6095479 | biostudies-literature
| S-EPMC5777325 | biostudies-literature
| S-EPMC3936749 | biostudies-literature