Unknown

Dataset Information

0

Spectroelectrochemical studies on the effect of cations in the alkaline glycerol oxidation reaction over carbon nanotube-supported Pd nanoparticles.


ABSTRACT: The effects of the alkali cations Na+ and K+ were investigated in the alkaline electrochemical oxidation of glycerol over Pd nanoparticles (NPs) deposited on functionalized carbon nanotubes (CNTs). The electrocatalytic activity was assessed by cyclic voltammetry revealing a lower overpotential of glycerol oxidation for nitrogen-functionalized Pd/NCNTs compared with oxygen-functionalized Pd/OCNTs. Whereas significantly lower current densities were observed for Pd/OCNT in NaOH than in KOH in agreement with stronger non-covalent interactions on the Pd surface, Pd/NCNT achieved an approximately three-times higher current density in NaOH than in KOH. In situ electrochemistry/IR spectroscopy was applied to unravel the product distribution as a function of the applied potential in NaOH and KOH. The IR spectra exhibited strongly changing band patterns upon varying the potential between 0.77 and 1.17 V vs RHE: at low potentials oxidized C3 species such as mesoxalate and tartronate were formed predominantly, and with increasing potentials C2 and C1 species originating from C-C bond cleavage were identified. The tendency to produce carbonate was found to be less pronounced in KOH. The less favored formation of highly oxidized C3 species and of carbonate is deduced to be the origin of the lower current densities in the cyclic voltammograms (CVs) for Pd/NCNT in KOH. The enhanced current densities in NaOH are rationalized by the presence of Na+ ions bound to the basic nitrogen species in the NCNT support. Adsorbed Na+ ions can form complexes with the organic molecules, presumably enhanced by the chelate effect. In this way, the organic molecules are assumed to be bound more tightly to the NCNT support in close proximity to the Pd NPs facilitating their oxidation.

SUBMITTER: Hiltrop D 

PROVIDER: S-EPMC6009201 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Spectroelectrochemical studies on the effect of cations in the alkaline glycerol oxidation reaction over carbon nanotube-supported Pd nanoparticles.

Hiltrop Dennis D   Cychy Steffen S   Elumeeva Karina K   Schuhmann Wolfgang W   Muhler Martin M  

Beilstein journal of organic chemistry 20180612


The effects of the alkali cations Na<sup>+</sup> and K<sup>+</sup> were investigated in the alkaline electrochemical oxidation of glycerol over Pd nanoparticles (NPs) deposited on functionalized carbon nanotubes (CNTs). The electrocatalytic activity was assessed by cyclic voltammetry revealing a lower overpotential of glycerol oxidation for nitrogen-functionalized Pd/NCNTs compared with oxygen-functionalized Pd/OCNTs. Whereas significantly lower current densities were observed for Pd/OCNT in NaO  ...[more]

Similar Datasets

| S-EPMC4735558 | biostudies-literature
| S-EPMC7683445 | biostudies-literature
| S-EPMC8395651 | biostudies-literature
| S-EPMC8306827 | biostudies-literature
| S-EPMC8467196 | biostudies-literature
| S-EPMC8228588 | biostudies-literature
| S-EPMC5890314 | biostudies-literature
| S-EPMC4651318 | biostudies-literature
| S-EPMC7422897 | biostudies-literature
| S-EPMC6065042 | biostudies-literature