Unknown

Dataset Information

0

Carbon-Supported Trimetallic Catalysts (PdAuNi/C) for Borohydride Oxidation Reaction.


ABSTRACT: The synthesis of palladium-based trimetallic catalysts via a facile and scalable synthesis procedure was shown to yield highly promising materials for borohydride-based fuel cells, which are attractive for use in compact environments. This, thereby, provides a route to more environmentally friendly energy storage and generation systems. Carbon-supported trimetallic catalysts were herein prepared by three different routes: using a NaBH4-ethylene glycol complex (PdAuNi/CSBEG), a NaBH4-2-propanol complex (PdAuNi/CSBIPA), and a three-step route (PdAuNi/C3-step). Notably, PdAuNi/CSBIPA yielded highly dispersed trimetallic alloy particles, as determined by XRD, EDX, ICP-OES, XPS, and TEM. The activity of the catalysts for borohydride oxidation reaction was assessed by cyclic voltammetry and RDE-based procedures, with results referenced to a Pd/C catalyst. A number of exchanged electrons close to eight was obtained for PdAuNi/C3-step and PdAuNi/CSBIPA (7.4 and 7.1, respectively), while the others, PdAuNi/CSBEG and Pd/CSBIPA, presented lower values, 2.8 and 1.2, respectively. A direct borohydride-peroxide fuel cell employing PdAuNi/CSBIPA catalyst in the anode attained a power density of 47.5 mW cm-2 at room temperature, while the elevation of temperature to 75 °C led to an approximately four-fold increase in power density to 175 mW cm-2. Trimetallic catalysts prepared via this synthesis route have significant potential for future development.

SUBMITTER: ElSheikh AMA 

PROVIDER: S-EPMC8228588 | biostudies-literature | 2021 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Carbon-Supported Trimetallic Catalysts (PdAuNi/C) for Borohydride Oxidation Reaction.

ElSheikh Ahmed M A AMA   Backović Gordana G   Oliveira Raisa C P RCP   Sequeira César A C CAC   McGregor James J   Šljukić Biljana B   Santos Diogo M F DMF  

Nanomaterials (Basel, Switzerland) 20210529 6


The synthesis of palladium-based trimetallic catalysts via a facile and scalable synthesis procedure was shown to yield highly promising materials for borohydride-based fuel cells, which are attractive for use in compact environments. This, thereby, provides a route to more environmentally friendly energy storage and generation systems. Carbon-supported trimetallic catalysts were herein prepared by three different routes: using a NaBH<sub>4</sub>-ethylene glycol complex (PdAuNi/C<sub>SBEG</sub>)  ...[more]

Similar Datasets

| S-EPMC9073133 | biostudies-literature
| S-EPMC4757964 | biostudies-literature
| S-EPMC11660032 | biostudies-literature
| S-EPMC5456429 | biostudies-literature
| S-EPMC7970476 | biostudies-literature
| S-EPMC8981501 | biostudies-literature
| S-EPMC8230237 | biostudies-literature
| S-EPMC4735558 | biostudies-literature
| S-EPMC8148513 | biostudies-literature
| S-EPMC9141339 | biostudies-literature