Unknown

Dataset Information

0

Tailoring Surface Frustrated Lewis Pairs of In2O3-x (OH)y for Gas-Phase Heterogeneous Photocatalytic Reduction of CO2 by Isomorphous Substitution of In3+ with Bi3.


ABSTRACT: Frustrated Lewis pairs (FLPs) created by sterically hindered Lewis acids and Lewis bases have shown their capacity for capturing and reacting with a variety of small molecules, including H2 and CO2, and thereby creating a new strategy for CO2 reduction. Here, the photocatalytic CO2 reduction behavior of defect-laden indium oxide (In2O3-x (OH) y ) is greatly enhanced through isomorphous substitution of In3+ with Bi3+, providing fundamental insights into the catalytically active surface FLPs (i.e., In-OH···In) and the experimentally observed "volcano" relationship between the CO production rate and Bi3+ substitution level. According to density functional theory calculations at the optimal Bi3+ substitution level, the 6s2 electron pair of Bi3+ hybridizes with the oxygen in the neighboring In-OH Lewis base site, leading to mildly increased Lewis basicity without influencing the Lewis acidity of the nearby In Lewis acid site. Meanwhile, Bi3+ can act as an extra acid site, serving to maximize the heterolytic splitting of reactant H2, and results in a more hydridic hydride for more efficient CO2 reduction. This study demonstrates that isomorphous substitution can effectively optimize the reactivity of surface catalytic active sites in addition to influencing optoelectronic properties, affording a better understanding of the photocatalytic CO2 reduction mechanism.

SUBMITTER: Dong Y 

PROVIDER: S-EPMC6009996 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Tailoring Surface Frustrated Lewis Pairs of In<sub>2</sub>O<sub>3-</sub><i><sub>x</sub></i> (OH)<sub>y</sub> for Gas-Phase Heterogeneous Photocatalytic Reduction of CO<sub>2</sub> by Isomorphous Substitution of In<sup>3+</sup> with Bi<sup>3</sup>.

Dong Yuchan Y   Ghuman Kulbir Kaur KK   Popescu Radian R   Duchesne Paul N PN   Zhou Wenjie W   Loh Joel Y Y JYY   Jelle Abdinoor A AA   Jia Jia J   Wang Di D   Mu Xiaoke X   Kübel Christian C   Wang Lu L   He Le L   Ghoussoub Mireille M   Wang Qiang Q   Wood Thomas E TE   Reyes Laura M LM   Zhang Peng P   Kherani Nazir P NP   Singh Chandra Veer CV   Ozin Geoffrey A GA  

Advanced science (Weinheim, Baden-Wurttemberg, Germany) 20180312 6


Frustrated Lewis pairs (FLPs) created by sterically hindered Lewis acids and Lewis bases have shown their capacity for capturing and reacting with a variety of small molecules, including H<sub>2</sub> and CO<sub>2</sub>, and thereby creating a new strategy for CO<sub>2</sub> reduction. Here, the photocatalytic CO<sub>2</sub> reduction behavior of defect-laden indium oxide (In<sub>2</sub>O<sub>3-</sub><i><sub>x</sub></i> (OH) <i><sub>y</sub></i> ) is greatly enhanced through isomorphous substitut  ...[more]

Similar Datasets

| S-EPMC7705729 | biostudies-literature
| S-EPMC10064321 | biostudies-literature
| S-EPMC8425883 | biostudies-literature
| S-EPMC8966658 | biostudies-literature
| S-EPMC10901510 | biostudies-literature
| S-EPMC8041292 | biostudies-literature
| S-EPMC9796924 | biostudies-literature
| S-EPMC6687039 | biostudies-literature
| S-EPMC7898805 | biostudies-literature
| S-EPMC8155995 | biostudies-literature