Biomarker Identification from RNA-Seq Data using a Robust Statistical Approach.
Ontology highlight
ABSTRACT: Biomarker identification by differentially expressed genes (DEGs) using RNA-sequencing technology is an important task to characterize the transcriptomics data. This is possible with the advancement of next-generation sequencing technology (NGS). There are a number of statistical techniques to identify DEGs from high-dimensional RNA-seq count data with different groups or conditions such as edgeR, SAMSeq, voom-limma, etc. However, these methods produce high false positives and low accuracy in presence of outliers. We describe a robust t-statistic method to overcome these drawbacks using both simulated and real RNA-seq datasets. The model performance with 61.2%, 35.2%, 21.6%, 6.9%, 74.5%, 78.4%, 93.1%, 35.2% sensitivity, specificity, MER, FDR, AUC, ACC, PPV, and NPV, respectively at 20% outliers is reported. We identified 409 DE genes with p-values<0.05 using robust t-test in HIV viremic vs avirmeic state real dataset. There are 28 up-regulated genes and 381 down-regulated genes estimated by log2 fold change (FC) approach at threshold value 1.5. The up-regulated genes form three clusters and it is found that 11 genes are highly associated in HIV- 1/AIDS. Protein-protein interaction (PPI) of up-regulated genes using STRING database found 21 genes with strong association among themselves. Thus, the identification of potential biomarkers from RNA-seq dataset using a robust t-statistical model is demonstrated.
SUBMITTER: Akond Z
PROVIDER: S-EPMC6016759 | biostudies-literature | 2018
REPOSITORIES: biostudies-literature
ACCESS DATA