Unknown

Dataset Information

0

Role of Hepatitis C Virus Envelope Glycoprotein E1 in Virus Entry and Assembly.


ABSTRACT: Hepatitis C virus (HCV) glycoproteins E1 and E2 form a heterodimer to constitute viral envelope proteins, which play an essential role in virus entry. E1 does not directly interact with host receptors, and its functions in viral entry are exerted mostly through its interaction with E2 that directly binds the receptors. HCV enters the host cell via receptor-mediated endocytosis during which the fusion of viral and host endosomal membranes occurs to release viral genome to cytoplasm. A putative fusion peptide in E1 has been proposed to participate in membrane fusion, but its exact role and underlying molecular mechanisms remain to be deciphered. Recently solved crystal structures of the E2 ectodomains and N-terminal of E1 fail to reveal a classical fusion-like structure in HCV envelope glycoproteins. In addition, accumulating evidence suggests that E1 also plays an important role in virus assembly. In this mini-review, we summarize current knowledge on HCV E1 including its structure and biological functions in virus entry, fusion, and assembly, which may provide clues for developing HCV vaccines and more effective antivirals.

SUBMITTER: Tong Y 

PROVIDER: S-EPMC6018474 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Role of Hepatitis C Virus Envelope Glycoprotein E1 in Virus Entry and Assembly.

Tong Yimin Y   Lavillette Dimitri D   Li Qingchao Q   Zhong Jin J  

Frontiers in immunology 20180619


Hepatitis C virus (HCV) glycoproteins E1 and E2 form a heterodimer to constitute viral envelope proteins, which play an essential role in virus entry. E1 does not directly interact with host receptors, and its functions in viral entry are exerted mostly through its interaction with E2 that directly binds the receptors. HCV enters the host cell <i>via</i> receptor-mediated endocytosis during which the fusion of viral and host endosomal membranes occurs to release viral genome to cytoplasm. A puta  ...[more]

Similar Datasets

| S-EPMC5375667 | biostudies-literature
| S-EPMC3184191 | biostudies-literature
| S-EPMC3554189 | biostudies-literature
| S-EPMC4175578 | biostudies-literature
| S-EPMC4580159 | biostudies-literature
| S-EPMC4523428 | biostudies-literature
| S-EPMC7368827 | biostudies-literature
| S-EPMC3954638 | biostudies-literature
| S-EPMC5784761 | biostudies-literature
| S-EPMC5355622 | biostudies-literature