Unknown

Dataset Information

0

Attenuated accumulation of jasmonates modifies stomatal responses to water deficit.


ABSTRACT: To determine whether drought-induced root jasmonate [jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile)] accumulation affected shoot responses to drying soil, near-isogenic wild-type (WT) tomato (Solanum lycopersicum cv. Castlemart) and the def-1 mutant (which fails to accumulate jasmonates during water deficit) were self- and reciprocally grafted. Rootstock hydraulic conductance was entirely rootstock dependent and significantly lower in def-1, yet def-1 scions maintained a higher leaf water potential as the soil dried due to their lower stomatal conductance (gs). Stomatal sensitivity to drying soil (the slope of gsversus soil water content) was low in def-1 self-grafts but was normalized by grafting onto WT rootstocks. Although soil drying increased 12-oxo-phytodienoic acid (OPDA; a JA precursor and putative antitranspirant) concentrations in def-1 scions, foliar JA accumulation was negligible and foliar ABA accumulation reduced compared with WT scions. A WT rootstock increased drought-induced ABA and JA accumulation in def-1 scions, but decreased OPDA accumulation. Xylem-borne jasmonates were biologically active, since supplying exogenous JA via the transpiration stream to detached leaves decreased transpiration of WT seedlings but had the opposite effect in def-1. Thus foliar accumulation of both ABA and JA at WT levels is required for both maximum (well-watered) gs and stomatal sensitivity to drying soil.

SUBMITTER: De Ollas C 

PROVIDER: S-EPMC6018964 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6706580 | biostudies-literature
2022-01-01 | GSE45262 | GEO
| S-EPMC7346309 | biostudies-literature
| S-EPMC5432590 | biostudies-literature
2013-02-12 | GSE44213 | GEO
| S-EPMC4982059 | biostudies-literature
| S-EPMC9966819 | biostudies-literature
| S-EPMC3471899 | biostudies-literature
| S-EPMC8389289 | biostudies-literature
2013-02-12 | E-GEOD-44213 | biostudies-arrayexpress