Unknown

Dataset Information

0

A conserved leucine zipper-like motif accounts for strong tetramerization capabilities of SEPALLATA-like MADS-domain transcription factors.


ABSTRACT: The development of angiosperm flowers is regulated by homeotic MIKC-type MADS-domain transcription factors that activate or repress target genes via the formation of DNA-bound, organ-specific tetrameric complexes. The protein-protein interaction (PPI) capabilities differ considerably between different MIKC-type proteins. In Arabidopsis thaliana the floral homeotic protein SEPALLATA3 (SEP3) acts as a hub that incorporates numerous other MADS-domain proteins into tetrameric complexes that would otherwise not form. However, the molecular mechanisms that underlie these promiscuous interactions remain largely unknown. In this study, we created a collection of amino acid substitution mutants of SEP3 to quantify the contribution of individual residues on protein tetramerization during DNA-binding, employing methods of molecular biophysics. We show that leucine residues at certain key positions form a leucine-zipper structure that is essential for tetramerization of SEP3, whereas the introduction of physicochemically very similar residues at respective sites impedes the formation of DNA-bound tetramers. Comprehensive molecular evolutionary analyses of MADS-domain proteins from a diverse set of flowering plants revealed exceedingly high conservation of the identified leucine residues within SEP3-subfamily proteins throughout angiosperm evolution. In contrast, MADS-domain proteins that are unable to tetramerize among themselves exhibit preferences for other amino acids at homologous sites. Our findings indicate that the subfamily-specific conservation of amino acid residues at just a few key positions accounts for subfamily-specific interaction capabilities of MADS-domain transcription factors and this has shaped the present-day structure of the PPI network controlling flower development.

SUBMITTER: Rumpler F 

PROVIDER: S-EPMC6018978 | biostudies-literature | 2018 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

A conserved leucine zipper-like motif accounts for strong tetramerization capabilities of SEPALLATA-like MADS-domain transcription factors.

Rümpler Florian F   Theißen Günter G   Melzer Rainer R  

Journal of experimental botany 20180401 8


The development of angiosperm flowers is regulated by homeotic MIKC-type MADS-domain transcription factors that activate or repress target genes via the formation of DNA-bound, organ-specific tetrameric complexes. The protein-protein interaction (PPI) capabilities differ considerably between different MIKC-type proteins. In Arabidopsis thaliana the floral homeotic protein SEPALLATA3 (SEP3) acts as a hub that incorporates numerous other MADS-domain proteins into tetrameric complexes that would ot  ...[more]

Similar Datasets

| S-EPMC5553167 | biostudies-literature
| S-EPMC48217 | biostudies-other
| S-EPMC3504729 | biostudies-literature
| S-EPMC10570711 | biostudies-literature
| S-EPMC8472062 | biostudies-literature
| S-EPMC298140 | biostudies-other
| S-EPMC524820 | biostudies-literature
| S-EPMC7111190 | biostudies-literature
| S-EPMC137568 | biostudies-literature
| S-EPMC4707544 | biostudies-literature