Unknown

Dataset Information

0

Ribosomal Protein S3 Gene Silencing Protects Against Cigarette Smoke-Induced Acute Lung Injury.


ABSTRACT: Chronic obstructive pulmonary disease (COPD) is estimated to be the third leading cause of death by 2030. Transcription factor NF-?B may play a critical role in COPD pathogenesis. Ribosomal protein S3 (RPS3), a 40S ribosomal protein essential for executing protein translation, has recently been found to interact with the NF-?B p65 subunit and promote p65 DNA-binding activity. We sought to study whether RPS3 gene silencing could protect against cigarette-smoke (CS)-induced acute lung injury in a mouse model. Effects of an intratracheal RPS3 siRNA in CS-induced lung injury were determined by measuring bronchoalveolar lavage (BAL) fluid cell counts, levels of inflammatory and oxidative damage markers, and NF-?B translocation. Lung RPS3 level was found to be upregulated for the first time with CS exposure, and RPS3 siRNA blocked CS-induced neutrophil counts in BAL fluid. RPS3 siRNA suppressed CS-induced lung inflammatory mediator and oxidative damage marker levels, as well as nuclear p65 accumulation and transcriptional activation. RPS3 siRNA was able to disrupt CS extract (CSE)-induced NF-?B activation in an NF-?B reporter gene assay. We report for the first time that RPS3 gene silencing ameliorated CS-induced acute lung injury, probably via interruption of the NF-?B activity, postulating that RPS3 is a novel therapeutic target for COPD.

SUBMITTER: Dong J 

PROVIDER: S-EPMC6031153 | biostudies-literature | 2018 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ribosomal Protein S3 Gene Silencing Protects Against Cigarette Smoke-Induced Acute Lung Injury.

Dong Jinrui J   Liao Wupeng W   Peh Hong Yong HY   Tan W S Daniel WSD   Zhou Shuo S   Wong W S Fred WSF  

Molecular therapy. Nucleic acids 20180703


Chronic obstructive pulmonary disease (COPD) is estimated to be the third leading cause of death by 2030. Transcription factor NF-κB may play a critical role in COPD pathogenesis. Ribosomal protein S3 (RPS3), a 40S ribosomal protein essential for executing protein translation, has recently been found to interact with the NF-κB p65 subunit and promote p65 DNA-binding activity. We sought to study whether RPS3 gene silencing could protect against cigarette-smoke (CS)-induced acute lung injury in a  ...[more]

Similar Datasets

| S-EPMC5345673 | biostudies-literature
| S-EPMC5816061 | biostudies-literature
2013-07-12 | E-GEOD-48787 | biostudies-arrayexpress
| S-EPMC9618465 | biostudies-literature
| S-EPMC8086044 | biostudies-literature
| S-EPMC6053945 | biostudies-literature
| S-EPMC10118454 | biostudies-literature
| S-EPMC8169846 | biostudies-literature
| S-EPMC4726536 | biostudies-literature
| S-EPMC4502524 | biostudies-literature