Unknown

Dataset Information

0

Physiological and Proteomics Analyses Reveal Low-Phosphorus Stress Affected the Regulation of Photosynthesis in Soybean.


ABSTRACT: Previous studies have revealed a significant genetic relationship between phosphorus (P)-efficiency and photosynthesis-related traits in soybean. In this study, we used proteome profiling in combination with expression analysis, biochemical investigations, and leaf ultrastructural analysis to identify the underlying physiological and molecular responses. The expression analysis and ultrastructural analysis showed that the photosynthesis key genes were decreased at transcript levels and the leaf mesophyll and chloroplast were severely damaged after low-P stress. Approximately 55 protein spots showed changes under low-P condition by mass spectrometry, of which 17 were involved in various photosynthetic processes. Further analysis revealed the depression of photosynthesis caused by low-P stress mainly involves the regulation of leaf structure, adenosine triphosphate (ATP) synthesis, absorption and transportation of CO?, photosynthetic electron transport, production of assimilatory power, and levels of enzymes related to the Calvin cycle. In summary, our findings indicated that the existence of a stringent relationship between P supply and the genomic control of photosynthesis in soybean. As an important strategy to protect soybean photosynthesis, P could maintain the stability of cell structure, up-regulate the enzymes’ activities, recover the process of photosystem II (PSII), and induce the expression of low-P responsive genes and proteins.

SUBMITTER: Chu S 

PROVIDER: S-EPMC6032344 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Physiological and Proteomics Analyses Reveal Low-Phosphorus Stress Affected the Regulation of Photosynthesis in Soybean.

Chu Shanshan S   Li Hongyan H   Zhang Xiangqian X   Yu Kaiye K   Chao Maoni M   Han Suoyi S   Zhang Dan D  

International journal of molecular sciences 20180606 6


Previous studies have revealed a significant genetic relationship between phosphorus (P)-efficiency and photosynthesis-related traits in soybean. In this study, we used proteome profiling in combination with expression analysis, biochemical investigations, and leaf ultrastructural analysis to identify the underlying physiological and molecular responses. The expression analysis and ultrastructural analysis showed that the photosynthesis key genes were decreased at transcript levels and the leaf  ...[more]

Similar Datasets

| S-EPMC6907255 | biostudies-literature
| S-EPMC10722586 | biostudies-literature
| S-EPMC10731862 | biostudies-literature
| S-EPMC5121124 | biostudies-literature
| S-EPMC6696053 | biostudies-literature
| S-EPMC7549834 | biostudies-literature
| S-EPMC9143508 | biostudies-literature
| S-EPMC10315683 | biostudies-literature
| S-EPMC7767974 | biostudies-literature
| S-EPMC6731624 | biostudies-literature