Unknown

Dataset Information

0

Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER.


ABSTRACT: Precise control over microbial cell growth conditions could enable detection of minute phenotypic changes, which would improve our understanding of how genotypes are shaped by adaptive selection. Although automated cell-culture systems such as bioreactors offer strict control over liquid culture conditions, they often do not scale to high-throughput or require cumbersome redesign to alter growth conditions. We report the design and validation of eVOLVER, a scalable do-it-yourself (DIY) framework, which can be configured to carry out high-throughput growth experiments in molecular evolution, systems biology, and microbiology. High-throughput evolution of yeast populations grown at different densities reveals that eVOLVER can be applied to characterize adaptive niches. Growth selection on a genome-wide yeast knockout library, using temperatures varied over different timescales, finds strains sensitive to temperature changes or frequency of temperature change. Inspired by large-scale integration of electronics and microfluidics, we also demonstrate millifluidic multiplexing modules that enable multiplexed media routing, cleaning, vial-to-vial transfers and automated yeast mating.

SUBMITTER: Wong BG 

PROVIDER: S-EPMC6035058 | biostudies-literature | 2018 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER.

Wong Brandon G BG   Mancuso Christopher P CP   Kiriakov Szilvia S   Bashor Caleb J CJ   Khalil Ahmad S AS  

Nature biotechnology 20180611 7


Precise control over microbial cell growth conditions could enable detection of minute phenotypic changes, which would improve our understanding of how genotypes are shaped by adaptive selection. Although automated cell-culture systems such as bioreactors offer strict control over liquid culture conditions, they often do not scale to high-throughput or require cumbersome redesign to alter growth conditions. We report the design and validation of eVOLVER, a scalable do-it-yourself (DIY) framework  ...[more]

Similar Datasets

| S-EPMC10074378 | biostudies-literature
2014-06-01 | GSE53366 | GEO
| S-EPMC5702135 | biostudies-literature
| S-EPMC3603448 | biostudies-literature
| S-EPMC9583850 | biostudies-literature
| S-EPMC8799682 | biostudies-literature
2013-02-12 | E-ERAD-77 | biostudies-arrayexpress
| S-EPMC7005164 | biostudies-literature
| S-EPMC5007438 | biostudies-literature
| S-EPMC5988304 | biostudies-literature