Unknown

Dataset Information

0

Parametrical Study on CO2 Capture from Ambient Air Using Hydrated K2CO3 Supported on an Activated Carbon Honeycomb.


ABSTRACT: Potassium carbonate is a highly hygroscopic salt, and this aspect becomes important for CO2 capture from ambient air. Moreover, CO2 capture from ambient air requires adsorbents with a very low pressure drop. In the present work an activated carbon honeycomb monolith was coated with K2CO3, and it was treated with moist N2 to hydrate it. Its CO2 capture capacity was studied as a function of the temperature, the water content of the air, and the air flow rate, following a factorial design of experiments. It was found that the water vapor content in the air had the largest influence on the CO2 adsorption capacity. Moreover, the deliquescent character of K2CO3 led to the formation of an aqueous solution in the pores of the carrier, which regulated the temperature of the CO2 adsorption. The transition between the anhydrous and the hydrated forms of potassium carbonate was studied by means of FT-IR spectroscopy. It can be concluded that hydrated potassium carbonate is a promising and cheap alternative for CO2 capture from ambient air for the production of CO2-enriched air or for the synthesis of solar fuels, such as methanol.

SUBMITTER: Rodriguez-Mosqueda R 

PROVIDER: S-EPMC6046220 | biostudies-literature | 2018 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Parametrical Study on CO<sub>2</sub> Capture from Ambient Air Using Hydrated K<sub>2</sub>CO<sub>3</sub> Supported on an Activated Carbon Honeycomb.

Rodríguez-Mosqueda Rafael R   Bramer Eddy A EA   Roestenberg Timo T   Brem Gerrit G  

Industrial & engineering chemistry research 20180228 10


Potassium carbonate is a highly hygroscopic salt, and this aspect becomes important for CO<sub>2</sub> capture from ambient air. Moreover, CO<sub>2</sub> capture from ambient air requires adsorbents with a very low pressure drop. In the present work an activated carbon honeycomb monolith was coated with K<sub>2</sub>CO<sub>3</sub>, and it was treated with moist N<sub>2</sub> to hydrate it. Its CO<sub>2</sub> capture capacity was studied as a function of the temperature, the water content of the  ...[more]

Similar Datasets

| S-EPMC5048159 | biostudies-literature
| S-EPMC9178735 | biostudies-literature
| S-EPMC10080690 | biostudies-literature
| S-EPMC11246423 | biostudies-literature
| S-EPMC10254919 | biostudies-literature
| S-EPMC5153834 | biostudies-literature
| S-EPMC10003791 | biostudies-literature
| S-EPMC6335639 | biostudies-literature
| S-EPMC7335196 | biostudies-literature
| S-EPMC7496027 | biostudies-literature