Unknown

Dataset Information

0

Inhibition of protein arginine methyltransferase 5 enhances hepatic mitochondrial biogenesis.


ABSTRACT: Protein arginine methyltransferase 5 (PRMT5) regulates gene expression either transcriptionally by symmetric dimethylation of arginine residues on histones H4R3, H3R8, and H2AR3 or at the posttranslational level by methylation of nonhistone target proteins. Although emerging evidence suggests that PRMT5 functions as an oncogene, its role in metabolic diseases is not well-defined. We investigated the role of PRMT5 in promoting high-fat-induced hepatic steatosis. A high-fat diet up-regulated PRMT5 levels in the liver but not in other metabolically relevant tissues such as skeletal muscle or white and brown adipose tissue. This was associated with repression of master transcription regulators involved in mitochondrial biogenesis. In contrast, lentiviral short hairpin RNA-mediated reduction of PRMT5 significantly decreased phosphatidylinositol 3-kinase/AKT signaling in mouse AML12 liver cells. PRMT5 knockdown or knockout decreased basal AKT phosphorylation but boosted the expression of peroxisome proliferator-activated receptor ? (PPAR?) and PGC-1? with a concomitant increase in mitochondrial biogenesis. Moreover, by overexpressing an exogenous WT or enzyme-dead mutant PRMT5 or by inhibiting PRMT5 enzymatic activity with a small-molecule inhibitor, we demonstrated that the enzymatic activity of PRMT5 is required for regulation of PPAR? and PGC-1? expression and mitochondrial biogenesis. Our results suggest that targeting PRMT5 may have therapeutic potential for the treatment of fatty liver.

SUBMITTER: Huang L 

PROVIDER: S-EPMC6052201 | biostudies-literature | 2018 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Inhibition of protein arginine methyltransferase 5 enhances hepatic mitochondrial biogenesis.

Huang Lei L   Liu Jehnan J   Zhang Xiao-Ou XO   Sibley Katelyn K   Najjar Sonia M SM   Lee Mary M MM   Wu Qiong Q  

The Journal of biological chemistry 20180517 28


Protein arginine methyltransferase 5 (PRMT5) regulates gene expression either transcriptionally by symmetric dimethylation of arginine residues on histones H4R3, H3R8, and H2AR3 or at the posttranslational level by methylation of nonhistone target proteins. Although emerging evidence suggests that PRMT5 functions as an oncogene, its role in metabolic diseases is not well-defined. We investigated the role of PRMT5 in promoting high-fat-induced hepatic steatosis. A high-fat diet up-regulated PRMT5  ...[more]

Similar Datasets

| S-EPMC2857073 | biostudies-literature
| S-EPMC3983339 | biostudies-literature
| S-EPMC10600687 | biostudies-literature
| S-EPMC10578352 | biostudies-literature
| S-EPMC9800170 | biostudies-literature
| S-EPMC4234621 | biostudies-literature
| S-EPMC7709973 | biostudies-literature
| S-EPMC6776692 | biostudies-literature
| S-EPMC6356582 | biostudies-literature
| S-EPMC4400290 | biostudies-literature