Unknown

Dataset Information

0

Depletion of Gprc5a Promotes Development of Diabetic Nephropathy.


ABSTRACT: Background Renal glomeruli are the primary target of injury in diabetic nephropathy (DN), and the glomerular podocyte has a key role in disease progression.Methods To identify potential novel therapeutic targets for DN, we performed high-throughput molecular profiling of G protein-coupled receptors (GPCRs) using human glomeruli.Results We identified an orphan GPCR, Gprc5a, as a highly podocyte-specific gene, the expression of which was significantly downregulated in glomeruli of patients with DN compared with those without DN. Inactivation of Gprc5a in mice resulted in thickening of the glomerular basement membrane and activation of mesangial cells, which are two hallmark features of DN in humans. Compared with wild-type mice, Gprc5a-deficient animals demonstrated increased albuminuria and more severe histologic changes after induction of diabetes with streptozotocin. Mechanistically, Gprc5a modulated TGF-? signaling and activation of the EGF receptor in cultured podocytes.Conclusions Gprc5a has an important role in the pathogenesis of DN, and further study of the podocyte-specific signaling activity of this protein is warranted.

SUBMITTER: Ma X 

PROVIDER: S-EPMC6054345 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Depletion of Gprc5a Promotes Development of Diabetic Nephropathy.

Ma Xiaojie X   Schwarz Angelina A   Sevilla Sonia Zambrano SZ   Levin Anna A   Hultenby Kjell K   Wernerson Annika A   Lal Mark M   Patrakka Jaakko J  

Journal of the American Society of Nephrology : JASN 20180410 6


<b>Background</b> Renal glomeruli are the primary target of injury in diabetic nephropathy (DN), and the glomerular podocyte has a key role in disease progression.<b>Methods</b> To identify potential novel therapeutic targets for DN, we performed high-throughput molecular profiling of G protein-coupled receptors (GPCRs) using human glomeruli.<b>Results</b> We identified an orphan GPCR, Gprc5a, as a highly podocyte-specific gene, the expression of which was significantly downregulated in glomerul  ...[more]

Similar Datasets

| S-EPMC8496726 | biostudies-literature
| S-EPMC4407856 | biostudies-literature
| S-EPMC5534294 | biostudies-other
| S-EPMC4899795 | biostudies-other
| S-EPMC8518197 | biostudies-literature
2004-04-01 | GSE1009 | GEO
| S-EPMC4978051 | biostudies-literature
| S-EPMC7001498 | biostudies-literature
2020-04-10 | GSE133597 | GEO
| S-EPMC4398628 | biostudies-literature