Unknown

Dataset Information

0

Visual tool for real-time monitoring of membrane fouling via Raman spectroscopy and process model based on principal component analysis.


ABSTRACT: Membrane fouling, i.e. accumulation of unwanted material on the surface of the membrane is a significant problem in filtration processes since it commonly degrades membrane performance and increases operating costs. Therefore, the advantages of early stage monitoring and control of fouling are widely recognized. In this work, the potential of using Raman spectroscopy coupled to chemometrics in order to quantify degree of membrane fouling in real-time was investigated. The Raman data set collected from adsorption experiments with varying pHs and concentrations of model compound vanillin was used to develop a predictive model based on principal component analysis (PCA) for the quantification of the vanillin adsorbed on the membrane. The correspondence between the predicted concentrations based on the PCA model and actual measured concentrations of adsorbed vanillin was moderately good. The model developed was successful in monitoring both adsorption and desorption processes. Furthermore, the model was able to detect abnormally proceeding experiment based on differentiating PCA score and loading values. The results indicated that the presented approach of using Raman spectroscopy combined with a PCA model has potential for use in monitoring and control of fouling and cleaning in membrane processes.

SUBMITTER: Virtanen T 

PROVIDER: S-EPMC6056556 | biostudies-literature | 2018 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Visual tool for real-time monitoring of membrane fouling via Raman spectroscopy and process model based on principal component analysis.

Virtanen Tiina T   Reinikainen Satu-Pia SP   Lahti Jussi J   Mänttäri Mika M   Kallioinen Mari M  

Scientific reports 20180723 1


Membrane fouling, i.e. accumulation of unwanted material on the surface of the membrane is a significant problem in filtration processes since it commonly degrades membrane performance and increases operating costs. Therefore, the advantages of early stage monitoring and control of fouling are widely recognized. In this work, the potential of using Raman spectroscopy coupled to chemometrics in order to quantify degree of membrane fouling in real-time was investigated. The Raman data set collecte  ...[more]

Similar Datasets

| S-EPMC5488198 | biostudies-literature
| S-EPMC5618359 | biostudies-other
| S-EPMC6627759 | biostudies-literature
2011-08-15 | GSE31375 | GEO
| S-EPMC2515598 | biostudies-other
| S-EPMC5947912 | biostudies-literature
| S-EPMC8643295 | biostudies-literature
| S-EPMC3778413 | biostudies-literature
| S-EPMC6520930 | biostudies-literature
| S-EPMC7067270 | biostudies-literature