Unknown

Dataset Information

0

Crystal-on-crystal chips for in situ serial diffraction at room temperature.


ABSTRACT: Recent developments in serial crystallography at X-ray free electron lasers (XFELs) and synchrotrons have been driven by two scientific goals in structural biology - first, static structure determination from nano or microcrystals of membrane proteins and large complexes that are difficult for conventional cryocrystallography, and second, direct observations of transient structural species in biochemical reactions at near atomic resolution. Since room-temperature diffraction experiments naturally demand a large quantity of purified protein, sample economy is critically important for all steps of serial crystallography from crystallization, crystal delivery to data collection. Here we report the development and applications of "crystal-on-crystal" devices to facilitate large-scale in situ serial diffraction experiments on protein crystals of all sizes - large, small, or microscopic. We show that the monocrystalline quartz as a substrate material prevents vapor loss during crystallization and significantly reduces background X-ray scattering. These devices can be readily adopted at XFEL and synchrotron beamlines, which enable efficient delivery of hundreds to millions of crystals to the X-ray beam, with an overall protein consumption per dataset comparable to that of cryocrystallography.

SUBMITTER: Ren Z 

PROVIDER: S-EPMC6057835 | biostudies-literature | 2018 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Crystal-on-crystal chips for in situ serial diffraction at room temperature.

Ren Zhong Z   Ayhan Medine M   Bandara Sepalika S   Bowatte Kalinga K   Kumarapperuma Indika I   Gunawardana Semini S   Shin Heewhan H   Wang Cong C   Zeng Xiaoli X   Yang Xiaojing X  

Lab on a chip 20180701 15


Recent developments in serial crystallography at X-ray free electron lasers (XFELs) and synchrotrons have been driven by two scientific goals in structural biology - first, static structure determination from nano or microcrystals of membrane proteins and large complexes that are difficult for conventional cryocrystallography, and second, direct observations of transient structural species in biochemical reactions at near atomic resolution. Since room-temperature diffraction experiments naturall  ...[more]

Similar Datasets

| S-EPMC7642789 | biostudies-literature
| S-EPMC4107920 | biostudies-literature
| S-EPMC6400179 | biostudies-literature
| S-EPMC4711625 | biostudies-literature
| S-EPMC3382516 | biostudies-literature
| S-EPMC4248567 | biostudies-literature