The Targeted Sequencing of Alpha Satellite DNA in Cercopithecus pogonias Provides New Insight Into the Diversity and Dynamics of Centromeric Repeats in Old World Monkeys.
Ontology highlight
ABSTRACT: Alpha satellite is the major repeated DNA element of primate centromeres. Specific evolutionary mechanisms have led to a great diversity of sequence families with peculiar genomic organization and distribution, which have till now been studied mostly in great apes. Using high throughput sequencing of alpha satellite monomers obtained by enzymatic digestion followed by computational and cytogenetic analysis, we compare here the diversity and genomic distribution of alpha satellite DNA in two related Old World monkey species, Cercopithecus pogonias and Cercopithecus solatus, which are known to have diverged about 7 Ma. Two main families of monomers, called C1 and C2, are found in both species. A detailed analysis of our data sets revealed the existence of numerous subfamilies within the centromeric C1 family. Although the most abundant subfamily is conserved between both species, our fluorescence in situ hybridization (FISH) experiments clearly show that some subfamilies are specific for each species and that their distribution is restricted to a subset of chromosomes, thereby pointing to the existence of recurrent amplification/homogenization events. The pericentromeric C2 family is very abundant on the short arm of all acrocentric chromosomes in both species, pointing to specific mechanisms that lead to this distribution. Results obtained using two different restriction enzymes are fully consistent with a predominant monomeric organization of alpha satellite DNA that coexists with higher order organization patterns in the C. pogonias genome. Our study suggests a high dynamics of alpha satellite DNA in Cercopithecini, with recurrent apparition of new sequence variants and interchromosomal sequence transfer.
SUBMITTER: Cacheux L
PROVIDER: S-EPMC6061836 | biostudies-literature | 2018 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA