Unknown

Dataset Information

0

Pharmacological reactivation of inactive X-linked Mecp2 in cerebral cortical neurons of living mice.


ABSTRACT: Rett syndrome (RTT) is a genetic disorder resulting from a loss-of-function mutation in one copy of the X-linked gene methyl-CpG-binding protein 2 (MECP2). Typical RTT patients are females and, due to random X chromosome inactivation (XCI), ?50% of cells express mutant MECP2 and the other ?50% express wild-type MECP2. Cells expressing mutant MECP2 retain a wild-type copy of MECP2 on the inactive X chromosome (Xi), the reactivation of which represents a potential therapeutic approach for RTT. Previous studies have demonstrated reactivation of Xi-linked MECP2 in cultured cells by biological or pharmacological inhibition of factors that promote XCI (called "XCI factors" or "XCIFs"). Whether XCIF inhibitors in living animals can reactivate Xi-linked MECP2 in cerebral cortical neurons, the cell type most therapeutically relevant to RTT, remains to be determined. Here, we show that pharmacological inhibitors targeting XCIFs in the PI3K/AKT and bone morphogenetic protein signaling pathways reactivate Xi-linked MECP2 in cultured mouse fibroblasts and human induced pluripotent stem cell-derived postmitotic RTT neurons. Notably, reactivation of Xi-linked MECP2 corrects characteristic defects of human RTT neurons including reduced soma size and branch points. Most importantly, we show that intracerebroventricular injection of the XCIF inhibitors reactivates Xi-linked Mecp2 in cerebral cortical neurons of adult living mice. In support of these pharmacological results, we also demonstrate genetic reactivation of Xi-linked Mecp2 in cerebral cortical neurons of living mice bearing a homozygous XCIF deletion. Collectively, our results further establish the feasibility of pharmacological reactivation of Xi-linked MECP2 as a therapeutic approach for RTT.

SUBMITTER: Przanowski P 

PROVIDER: S-EPMC6077728 | biostudies-literature | 2018 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Pharmacological reactivation of inactive X-linked <i>Mecp2</i> in cerebral cortical neurons of living mice.

Przanowski Piotr P   Wasko Urszula U   Zheng Zeming Z   Yu Jun J   Sherman Robyn R   Zhu Lihua Julie LJ   McConnell Michael J MJ   Tushir-Singh Jogender J   Green Michael R MR   Bhatnagar Sanchita S  

Proceedings of the National Academy of Sciences of the United States of America 20180716 31


Rett syndrome (RTT) is a genetic disorder resulting from a loss-of-function mutation in one copy of the X-linked gene methyl-CpG-binding protein 2 (<i>MECP2</i>). Typical RTT patients are females and, due to random X chromosome inactivation (XCI), ∼50% of cells express mutant MECP2 and the other ∼50% express wild-type MECP2. Cells expressing mutant MECP2 retain a wild-type copy of MECP2 on the inactive X chromosome (Xi), the reactivation of which represents a potential therapeutic approach for R  ...[more]

Similar Datasets

| S-EPMC7799367 | biostudies-literature
| S-EPMC4156765 | biostudies-literature
| S-EPMC4726391 | biostudies-literature
| S-EPMC9039756 | biostudies-literature
2020-10-27 | GSE160146 | GEO
| S-EPMC5321041 | biostudies-literature
| S-EPMC2838567 | biostudies-literature
| S-EPMC395918 | biostudies-literature
| S-EPMC5253927 | biostudies-literature
| S-EPMC8580139 | biostudies-literature